Abstract
Boris Chidlovskii |
Published on arXiv:1909.08962, 17 September, 2019 |
Abstract
We address the problem of severe class imbalance in unsupervised domain adaptation, when the class spaces in source and target domains diverge considerably. Till recently, domain adaptation methods assumed the aligned class spaces, such that reducing distribution divergence makes the transfer between domains easier. Such an alignment assumption is invalidated in real world scenarios where some source classes are often under-represented or simply absent in the target domain. We revise the current approaches to class imbalance and propose a new one that uses latent codes in the adversarial domain adaptation framework. We show how the latent codes can be used to disentangle the silent structure of the target domain and to identify under-represented classes. We show how to learn the latent code reconstruction jointly with the domain invariant representation and use them to accurately estimate the target labels.
En 2021, NAVER France a obtenu les notes suivantes pour chacun des indicateurs :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.