Abstract
Jinyoung Choi, Christopher Dance, Jung-eun Kim, Seulbin Hwang, Kyung-sik Park |
International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May-5 June, 2021 |
Download |
Abstract
Modern navigation algorithms based on deep reinforcement learning (RL) have proven to be efficient and robust. However, most deep RL algorithms operate in a risk-neutral manner, making no special attempt to shield users from outcomes that may hurt the most, even if such shielding might cause little loss of performance. Furthermore, such algorithms typically make no provisions to ensure safety in the presence of inaccuracies in the models on which they were trained, beyond adding a cost-of-collision and some domain randomization while training, in spite of the formidable complexity of the environments in which they operate. In this paper, we present a novel distributional RL algorithm that not only learns an uncertainty-aware policy, but can also change its risk measure without expensive fine-tuning or retraining. Our method shows superior performance and safety over baselines in partially-observed multi-agent navigation tasks. We also demonstrate that agents trained using our method can adapt their policies to a wide range of risk measures in a zero-shot manner.
1. Difference in female/male salary: 33/40 points
2. Difference in salary increases female/male: 35/35 points
3. Salary increases upon return from maternity leave: uncalculable
4. Number of employees in under-represented gender in 10 highest salaries: 0/10 points
NAVER France targets (with respect to the 2022 index) are as follows:
En 2022, NAVER France a obtenu les notes suivantes pour chacun des indicateurs :
1. Les écarts de salaire entre les femmes et les hommes: 33 sur 40 points
2. Les écarts des augmentations individuelles entre les femmes et les hommes : 35 sur 35 points
3. Toutes les salariées augmentées revenant de congé maternité : non calculable
4. Le nombre de salarié du sexe sous-représenté parmi les 10 plus hautes rémunérations : 0 sur 10 points
Les objectifs de progression pour l’index 2022 de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.