Abstract
Till Kletti, Jean-Michel Renders, Patrick Loiseau |
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Madrid, Spain, 11-15 July, 2022 |
Download |
arXiv |
Abstract
In recent years, it has become clear that rankings delivered in many areas need not only be useful to the users but also respect fairness of exposure for the item producers. We consider the problem of finding ranking policies that achieve a Pareto-optimal tradeoff between these two aspects. Several methods were proposed to solve it; for instance a popular one is to use linear programming with a Birkhoff-von Neumann decomposition. These methods, however, are based on a classical Position Based exposure Model (PBM), which assumes independence between the items (hence the exposure only depends on the rank). In many applications, this assumption is unrealistic and the community increasingly moves towards considering other models that include dependences, such as the Dynamic Bayesian Network (DBN) exposure model. For such models, computing (exact) optimal fair ranking policies remains an open question.
We answer this question by leveraging a new geometrical method based on the so-called expohedron proposed recently for the PBM (Kletti et al., WSDM’22). We lay out the structure of a new geometrical object (the DBN-expohedron), and propose for it a Carathéodory decomposition algorithm of complexity O(n3), where n is the number of documents to rank. Such an algorithm enables expressing any feasible expected exposure vector as a distribution over at most n rankings; furthermore we show that we can compute the whole set of Pareto-optimal expected exposure vectors with the same complexity O(n3). Our work constitutes the first exact algorithm able to efficiently find a Pareto-optimal distribution of rankings. It is applicable to a broad range of fairness notions, including classical notions of meritocratic and demographic fairness. We empirically evaluate our method on the TREC2020 and MSLR datasets and compare it to several baselines in terms of Pareto-optimality and speed.
1. Difference in female/male salary: 33/40 points
2. Difference in salary increases female/male: 35/35 points
3. Salary increases upon return from maternity leave: uncalculable
4. Number of employees in under-represented gender in 10 highest salaries: 0/10 points
NAVER France targets (with respect to the 2022 index) are as follows:
En 2022, NAVER France a obtenu les notes suivantes pour chacun des indicateurs :
1. Les écarts de salaire entre les femmes et les hommes: 33 sur 40 points
2. Les écarts des augmentations individuelles entre les femmes et les hommes : 35 sur 35 points
3. Toutes les salariées augmentées revenant de congé maternité : non calculable
4. Le nombre de salarié du sexe sous-représenté parmi les 10 plus hautes rémunérations : 0 sur 10 points
Les objectifs de progression pour l’index 2022 de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.