Abstract
Riccardo Volpi, Cesar de Souza, Yannis Kalantidis, Diane Larlus, Gregory Rogez |
Findings of the Workshop on Continual Learning in Computer Vision (CLVISION) at the Conference on Computer Vision and Pattern Recognition (CVPR), virtual event, 25 June 2021 |
Download |
Abstract
Most learning algorithms rely on certain assumptions to work properly, namely that a) all training data is available before training, and b) all training data belongs to the same distribution. However, it should be easy to see those assumptions do not always hold true in practice. A robot interacting with the environment may obtain new data samples as time goes by; a SaaS operator may want to improve models which have already been trained and deployed without re-starting training from scratch or revisiting all data samples already seen by the model; or one could want to learn a model on a potentially infinite source of data. In this work, we explore memory-based methods to efficiently train neural networks when training samples are provided in the form of a data stream whose underlying distribution changes in well-distinct domains—on which we desire to perform uniformly well. We show that different memory-update strategies have a deep impact in the efficacy of the learning, addressing the catastrophic forgetting phenomena often associated with a shift in the input domain. We provide a protocol for assessing the characteristics of different strategies and show how choosing them correctly can result in models that are less sensitive to a particular choice of hyper-parameters, such as the learning rate.
Details on the gender equality index score 2023 (related to year 2022) for NAVER France of 81/100.
NAVER France targets are as follows:
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2023 au titre des données 2022 : 81/100
Détail des indicateurs :
Les objectifs de progression de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.