Abstract
Thibaut Thonet, Jean-Michel Renders |
International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China (virtual event), 25-30 July, 2020 |
Download |
Abstract
Rankings are at the core of countless modern applications and thus play a major role in various decision making scenarios. When such rankings are produced by data-informed, machine learning-based algorithms, the potentially harmful biases contained in the data and algorithms are likely to be reproduced and even exacerbated. This motivated recent research to investigate a methodology for fair ranking, as a way to correct the aforementioned biases. Current approaches to fair ranking consider that the protected groups, i.e., the partition of the population potentially impacted by the biases, are known. However, in a realistic scenario, this assumption might not hold as different biases may lead to different partitioning into protected groups. Only accounting for one such partition (i.e., grouping) would still lead to potential unfairness with respect to the other possible groupings. Therefore, in this paper, we study the problem of designing fair ranking algorithms without knowing in advance the groupings that will be used later to assess their fairness. The approach that we follow is to rely on a carefully chosen set of groupings when deriving the ranked lists, and we empirically investigate which selection strategies are the most effective. An efficient two-step greedy brute-force method is also proposed to embed our strategy. As benchmark for this study, we adopted the dataset and setting composing the TREC 2019 Fair Ranking track.
Details on the gender equality index score 2023 (related to year 2022) for NAVER France of 81/100.
NAVER France targets are as follows:
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2023 au titre des données 2022 : 81/100
Détail des indicateurs :
Les objectifs de progression de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.