Abstract
Behrooz Omidvar-Tehrani, Sruthi Viswanathan, Jean-Michel Renders |
28th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), Washington, USA, 3 - 6 November, 2020 |
Download |
Abstract
Recommending Points-of-Interest (POIs) is surfacing in many location-based applications. The literature contains personalized and socialized POI recommendation approaches which employ historical check-ins and social links to make recommendations. However these systems still lack customizability (incorporating session-based user interactions with the system) and contextuality (incorporating the situational context of the user), particularly in cold start situations, where nearly no user information is available. In this paper, we propose LikeMind, a POI recommendation system which tackles the challenges of cold start, customizability, contextuality, and explainability by exploiting look-alike groups mined in public POI datasets. LikeMind reformulates the problem of POI recommendation, as recommending explainable look-alike groups (and their POIs) which are in line with user’s interests. LikeMind frames the task of POI recommendation as an exploratory process where users interact with the system by expressing their favorite POIs, and their interactions impact the way look-alike groups are selected out. Moreover, LikeMind employs “mindsets”, which capture actual situation and intent of the user, and enforce the semantics of POI interestingness. In an extensive set of experiments, we show the quality of our approach in recommending relevant look-alike groups and their POIs, in terms of efficiency and effectiveness.
En 2021, NAVER France a obtenu les notes suivantes pour chacun des indicateurs :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.