Abstract
Michel Aractingi, Christopher Dance, Julien Perez, Tomi Silander |
Reinforcement Learning for Real Life Workshop (ICML), Long Beach, USA, 10-15 June, 2019 |
Download |
Abstract
Training agents to operate in one environment often yields overfitted models that are unable to generalize to the changes in that environment. However, due to the numerous variations that can occur in the real-world, the agent is required to be robust in order to be useful. This has not been the case for agents trained with reinforcement learning (RL) algorithms. In this paper, we investigate the overfitting of RL agents to the training environments in visual navigation tasks. Our experiments show that deep RL agents can overfit even when trained on multiple environments simultaneously. Another point of the paper is to discuss the role of adding invariance to the input and what it means then to the notion of generalization. Finally, we suggest a training procedure that combines RL with supervised learning methods to improve the generalization to changes in the visual input. The experimentation is done on the VizDoom environment which contains hundreds of textures that are suitable to investigate generalization to changes in the visual observation.
Details on the gender equality index score 2023 (related to year 2022) for NAVER France of 81/100.
NAVER France targets are as follows:
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2023 au titre des données 2022 : 81/100
Détail des indicateurs :
Les objectifs de progression de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.