Abstract
Gabriela Csurka, Christopher Dance, Martin Humenberger |
Published on arXiv.org |
Abstract
This paper presents an overview of the evolution of local features from handcrafted to deeplearning-based methods, followed by a discussion of several benchmarks and papers evaluating such local features. Our investigations are motivated by 3D reconstruction problems, where the precise location of the features is important. As we describe these methods, we highlight and explain the challenges of feature extraction and potential ways to overcome them. We first present handcrafted methods, followed by methods based on classical machine learning and finally we discuss methods based on deep-learning. This largely chronologically-ordered presentation will help the reader to fully understand the topic of image and region description in order to make best use of it in modern computer vision applications. In particular, understanding handcrafted methods and their motivation can help to understand modern approaches and how machine learning is used to improve the results.We also provide references to most of the relevant literature and code.
1. Difference in female/male salary: 33/40 points
2. Difference in salary increases female/male: 35/35 points
3. Salary increases upon return from maternity leave: uncalculable
4. Number of employees in under-represented gender in 10 highest salaries: 0/10 points
NAVER France targets (with respect to the 2022 index) are as follows:
En 2022, NAVER France a obtenu les notes suivantes pour chacun des indicateurs :
1. Les écarts de salaire entre les femmes et les hommes: 33 sur 40 points
2. Les écarts des augmentations individuelles entre les femmes et les hommes : 35 sur 35 points
3. Toutes les salariées augmentées revenant de congé maternité : non calculable
4. Le nombre de salarié du sexe sous-représenté parmi les 10 plus hautes rémunérations : 0 sur 10 points
Les objectifs de progression pour l’index 2022 de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.