Abstract
Jérome Revaud, Rafael Sampaio De Rezende, Minhyeok Heo, Chanmi You, Seong-Gyun Jeong |
Multi-modal Learning and Application Workshop (CVPR), Long Beach, USA, 16-20 June, 2019 |
Abstract
Maps are an increasingly important tool in our daily lives, yet their rich semantic content still largely depends on manual input. Motivated by the broad availability of geo-tagged street-view images, we propose a new task aiming to make the map update process more proactive. We focus on automatically detecting changes of Points of Interest (POIs), specifically stores or shops of any kind, based on visual input. Faced with the lack of an appropriate benchmark, we build and release a large dataset, captured in two large shopping centers, that comprises 33K geo-localized images and 578 POIs. We then design a generic approach that compares two image sets captured in the same venue at different times and outputs POI changes as a ranked list of map locations. In contrast to logo or franchise recognition approaches, our system does not depend on an external franchise database. It is instead inspired by recent deep metric learning approaches that learn a similarity function fit to the task at hand. We compare various loss functions to learn a metric aligned with the POI change detection goal, and report promising results.
© IEEE
More details about this paper and the Mallscape dataset can be found in the related blog post.
Details on the gender equality index score 2023 (related to year 2022) for NAVER France of 81/100.
NAVER France targets are as follows:
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2023 au titre des données 2022 : 81/100
Détail des indicateurs :
Les objectifs de progression de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.