Abstract
Bernard Omidvar-Tehrani, Sihem Amer-Yahia, Laks V.S. Lakshmanan |
35ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), Lyon, France, 15-18 October, 2019 |
@inproceedings{omidvar2018cohort, title={Cohort representation and exploration}, author={Omidvar-Tehrani, Behrooz and Amer-Yahia, Sihem and Lakshmanan, Laks VS}, booktitle={2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)}, pages={169--178}, year={2018}, organization={IEEE} }
Abstract
The abundant availability of health-care data calls for effective analysis methods which help medical experts gain a better understanding of their data. While the focus has been largely on prediction,
“representation” and “exploration” of health-care data have received little attention. In this paper, we introduce CORE, a framework for representing and exploring patient cohorts. Obtaining a readable and succinct representation of health data of a cohort is challenging because cohorts often consist of hundreds of patients whose medical actions are of various types and occur at different points in time. We extend the Needleman-Wunsch algorithm for sequence matching to handle temporal sequences, and propose “trajectory families”, a customized index to efficiently compare and aggregate patient trajectories into a cohort representation. We define cohort exploration as finding similar cohorts to a given cohort. This problem is challenging because the potential number of similar cohorts is huge. We propose a two-staged approach based on limiting the search space to “contrast cohorts” and then computing their similarity to the given cohort. To speed up cohort similarity computation, we use “event sets” in the same spirit as the double dictionary encoding proposed for keyword search. We run qualitative and quantitative experiments on real data to explore the efficiency and usefulness of CORE. We show that CORE representations reduce time-to-insight from hours to seconds and help medical experts find insights better than state-of-the-art Visual Analytics tools.
Details on the gender equality index score 2023 (related to year 2022) for NAVER France of 81/100.
NAVER France targets are as follows:
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2023 au titre des données 2022 : 81/100
Détail des indicateurs :
Les objectifs de progression de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.