Abstract
Bernard Omidvar-Tehrani, Sihem Amer-Yahia, Laks V.S. Lakshmanan |
The International Journal on Very Large Data Bases (VLDBJ), Springer, August 2020 |
Download |
Abstract
The abundant availability of health-care data calls for effective analysis methods to help medical experts gain a better understanding of their patients and their health. The focus of existing work has been largely on prediction. In this paper, we introduce Core, a framework for cohort “representation” and “exploration”. Our contributions are two-fold: First, we formalize cohort representation as the problem of aggregating the trajectories of its patients. This problem is challenging because cohorts often consist of hundreds of patients who underwent medical actions of various types at different points in time. We prove that producing a representative cohort trajectory is NP-complete with a reduction of the Multiple Sequence Alignment problem. We propose a heuristic that extends the NeedlemanWunsch algorithm for sequence matching to handle temporal sequences. To further improve cohort representation efficiency, we introduce “trajectory families” and “stratified sampling”. Our second contribution is formalizing the problem of cohort exploration as finding a set of cohorts that are similar to a cohort of interest and that maximize entropy. This problem is challenging because the potential number of similar cohorts is huge.
We prove NP-completeness with a reduction of the Maximum Edge Subgraph problem. To address complexity, we develop a multi-staged approach based on limiting the search space to “contrast cohorts”.
Details on the gender equality index score 2023 (related to year 2022) for NAVER France of 81/100.
NAVER France targets are as follows:
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2023 au titre des données 2022 : 81/100
Détail des indicateurs :
Les objectifs de progression de NAVER France sont :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.