Abstract
Muhammad Khalifa, Hady Elsahar, Marc Dymetman |
International Conference on Learning Representations (ICLR), virtual event, 4-8 May, 2021 |
Paper |
Github |
Abstract
We propose a Distributional Approach to address Controlled Text Generation from pre-trained Language Models (LMs). This view permits to define, in a single formal framework, “pointwise” and “distributional” constraints over the target LM — to our knowledge, this is the first approach with such generality — while minimizing KL divergence with the initial LM distribution. The optimal target distribution is then uniquely determined as an explicit EBM (Energy-Based Model) representation. From that optimal representation, we then train the target controlled autoregressive LM through an adaptive distributional variant of Policy Gradient. We conduct a first set of experiments over pointwise constraints showing the advantages of our approach over a set of baselines, in terms of obtaining a controlled LM balancing constraint satisfaction with divergence from the initial LM (GPT-2). We then perform experiments over distributional constraints, a unique feature of our approach, demonstrating its potential as a remedy to the problem of Bias in Language Models. Through an ablation study, we show the effectiveness of our adaptive technique for obtaining faster convergence.
En 2021, NAVER France a obtenu les notes suivantes pour chacun des indicateurs :
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.