Article written at the occasion of the XRCE 20th anniversary celebration .
His grammar contained 3,959 rules of the Sanskrit language, which describe how words are composed, how they combine into sentences, and what they mean.
This grammar probably didn’t influence the everyday life of the population as its primary goal was to teach the proper use of Sanskrit for the writers of sacred books. Who could have foreseen at the time that this knowledge of the composition of words, their combination into sentences and the description of their meaning would one day become so critical in today’s world of information overload.
Today, one of the greatest challenges of the “information society” and “knowledge economy” is making sense of and getting the most benefit out of “big data”, 80 per cent of which is textual. Company analysts trying to follow which company bought which company, for example, might be faced with reviewing hundreds of thousands of documents. Doctors require lists of patients eligible for a clinical trial based on hundreds of thousands of patient reports. Companies need to learn about problems with their products which might be reported in hundreds of thousands of forums.
Understanding all the subtleties and complexities of human languages is, and probably will always be, the privilege of the human mind, but given the enormous quantities of texts, man must rely on the help of automated processing. The better automated processes manage to decode the meaning of the texts, the more they can help by extracting useful information from them, and thus mining knowledge.
Integrating grammar in the design of automated language processing tools can be of real help since texts are composed of words in different forms and roles, and those words make up sentences and the sentences convey complex meanings – which are described by grammar rules.
How does grammar help access information and knowledge?
Today, the most widely- used tools that help us access information and knowledge in texts are search engines based on keyword search. When you write a word in the keyword box of a search engine you will get a list of documents that contain that word. But could a business analyst ask a standard keyword-based search engine to provide a ‘list of the company transactions’? Could a doctor ask for the ‘list of patients who are eligible for a clinical trial’? Could a company manager obtain a ‘list of complaints’? The answer is clearly “no”.
To illustrate the limitations of keyword-based search for complex queries, let’s take the example of a business analyst who would like to submit the query ‘buyers and companies bought’. Why, after submitting such a query would the title of this news article ‘Microsoft Acquires Sun Microsystems’ not be returned?
In order to be able to return this answer, the search-engine would have to be aware of how words are composed, how they combine into sentences and what they mean i.e., it would have to “know” some grammar. It would need to master at least the following concepts:
But keyword-based search engines are not aware of these concepts. More sophisticated search engines are required.
Beyond keyword search
Since the foundation of Xerox Research Centre Europe in the early nineties, one of our main research topics has been natural language processing. Over the past 10 years, the focus has been on information extraction so that automated tools can return answers to more in-depth queries. We have developed what we call ‘FactSpotter’, a sophisticated information extraction tool that takes into account the complexity of language structure, and can navigate the three concepts described in the example above.
Based on linguistic rules, FactSpotter can detect the names of people, companies or locations, dates and various other so-called “named entities[i]” in texts (and it can do this is several different languages).1 In the example above, FactSpotter would identify ‘Microsoft’ and ‘Sun Microsystems’ as company names. It would analyse word forms, and provide a formalism, which allows users to constitute lists of words and expressions that convey the same concept. This ability makes it possible, for example, to associate the word ‘acquires’ with the concept of transaction.
FactSpotter also can conduct syntactic;and semantic;analysis. Syntactic analysis identifies ‘Microsoft’ as the subject of ‘acquires’ and ‘Sun Microsystems’ as the direct object of ‘acquires’. The semantic analysis maps these syntactic functions into semantic roles. Thus ‘Microsoft’ can be recognized as a buyer and ‘Sun Microsystems’ as a company bought. FactSpotter’s grammatical analysis of ‘Microsoft acquires Sun Microsystems’
Context is another aspect of human language that FactSpotter can handle. It can differentiate among several meanings of the same word (disambiguation), e.g., it knows that in the sentence ‘I can see, and I see a can’, the first can is a verb, and the second is a noun. It also can recognize particular linguistic structures that carry the same meaning, e.g., ‘buy’, ‘acquire’ and ‘become the new owner of’, and it has the capability of recognizing different expressions that refer to the same entity, e.g., ‘Microsoft Corporation’ and ‘it’ in the sentence ‘Microsoft Corporation announced after the close today that it will buy Sun Microsystems’. As you can see, these skills are necessary to understand linguistic meaning _ something keyword-based search engines simply can’t do.
FactSpotter has been used in numerous information extraction tasks in different domains and languages: in clinical decision making, event extraction and the establishment of chronological order in news articles, the detection of political risk, mining clients’ complaints for customer relationship management, the extraction of biological knowledge from research articles, etc. We are currently engaged in new research that will make it very easy for FactSpotter to adapt to new tasks.
Grammatical rules were created some 2500 years ago and have been taught ever since schools exist – to the regret of many a pupil! From guidelines in writing sacred texts, to regulating national languages, to learning and translating foreign languages, the practical uses of grammar rules have increased over the centuries. Today even computers are more effective if they have been through grammar school!
[1] Factspotter named entity recognition capabilities ranked 1st min the following benchmark competitions: Semeval (2007) Named Entity Metonymy Resolution (English), Tempeval (2007) Detection of temporal expressions (English), Harem (2008) Named Entity Detection (Portuguese), Ester 2 (2009), Named Entity Detection (French)The Xerox Incremental Parser component of Factspotter can be accessed online at http://open.xerox.com/Services/XIPParser
NAVER LABS Europe 6-8 chemin de Maupertuis 38240 Meylan France Contact
To make robots autonomous in real-world everyday spaces, they should be able to learn from their interactions within these spaces, how to best execute tasks specified by non-expert users in a safe and reliable way. To do so requires sequential decision-making skills that combine machine learning, adaptive planning and control in uncertain environments as well as solving hard combinatorial optimization problems. Our research combines expertise in reinforcement learning, computer vision, robotic control, sim2real transfer, large multimodal foundation models and neural combinatorial optimization to build AI-based architectures and algorithms to improve robot autonomy and robustness when completing everyday complex tasks in constantly changing environments. More details on our research can be found in the Explore section below.
For a robot to be useful it must be able to represent its knowledge of the world, share what it learns and interact with other agents, in particular humans. Our research combines expertise in human-robot interaction, natural language processing, speech, information retrieval, data management and low code/no code programming to build AI components that will help next-generation robots perform complex real-world tasks. These components will help robots interact safely with humans and their physical environment, other robots and systems, represent and update their world knowledge and share it with the rest of the fleet. More details on our research can be found in the Explore section below.
Visual perception is a necessary part of any intelligent system that is meant to interact with the world. Robots need to perceive the structure, the objects, and people in their environment to better understand the world and perform the tasks they are assigned. Our research combines expertise in visual representation learning, self-supervised learning and human behaviour understanding to build AI components that help robots understand and navigate in their 3D environment, detect and interact with surrounding objects and people and continuously adapt themselves when deployed in new environments. More details on our research can be found in the Explore section below.
Details on the gender equality index score 2024 (related to year 2023) for NAVER France of 87/100.
The NAVER France targets set in 2022 (Indicator n°1: +2 points in 2024 and Indicator n°4: +5 points in 2025) have been achieved.
—————
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2024 au titre des données 2023 : 87/100
Détail des indicateurs :
Les objectifs de progression de l’Index définis en 2022 (Indicateur n°1 : +2 points en 2024 et Indicateur n°4 : +5 points en 2025) ont été atteints.
Details on the gender equality index score 2024 (related to year 2023) for NAVER France of 87/100.
1. Difference in female/male salary: 34/40 points
2. Difference in salary increases female/male: 35/35 points
3. Salary increases upon return from maternity leave: Non calculable
4. Number of employees in under-represented gender in 10 highest salaries: 5/10 points
The NAVER France targets set in 2022 (Indicator n°1: +2 points in 2024 and Indicator n°4: +5 points in 2025) have been achieved.
——————-
Index NAVER France de l’égalité professionnelle entre les femmes et les hommes pour l’année 2024 au titre des données 2023 : 87/100
Détail des indicateurs :
1. Les écarts de salaire entre les femmes et les hommes: 34 sur 40 points
2. Les écarts des augmentations individuelles entre les femmes et les hommes : 35 sur 35 points
3. Toutes les salariées augmentées revenant de congé maternité : Incalculable
4. Le nombre de salarié du sexe sous-représenté parmi les 10 plus hautes rémunérations : 5 sur 10 points
Les objectifs de progression de l’Index définis en 2022 (Indicateur n°1 : +2 points en 2024 et Indicateur n°4 : +5 points en 2025) ont été atteints.
To make robots autonomous in real-world everyday spaces, they should be able to learn from their interactions within these spaces, how to best execute tasks specified by non-expert users in a safe and reliable way. To do so requires sequential decision-making skills that combine machine learning, adaptive planning and control in uncertain environments as well as solving hard combinatorial optimisation problems. Our research combines expertise in reinforcement learning, computer vision, robotic control, sim2real transfer, large multimodal foundation models and neural combinatorial optimisation to build AI-based architectures and algorithms to improve robot autonomy and robustness when completing everyday complex tasks in constantly changing environments.
The research we conduct on expressive visual representations is applicable to visual search, object detection, image classification and the automatic extraction of 3D human poses and shapes that can be used for human behavior understanding and prediction, human-robot interaction or even avatar animation. We also extract 3D information from images that can be used for intelligent robot navigation, augmented reality and the 3D reconstruction of objects, buildings or even entire cities.
Our work covers the spectrum from unsupervised to supervised approaches, and from very deep architectures to very compact ones. We’re excited about the promise of big data to bring big performance gains to our algorithms but also passionate about the challenge of working in data-scarce and low-power scenarios.
Furthermore, we believe that a modern computer vision system needs to be able to continuously adapt itself to its environment and to improve itself via lifelong learning. Our driving goal is to use our research to deliver embodied intelligence to our users in robotics, autonomous driving, via phone cameras and any other visual means to reach people wherever they may be.
This web site uses cookies for the site search, to display videos and for aggregate site analytics.
Learn more about these cookies in our privacy notice.
You may choose which kind of cookies you allow when visiting this website. Click on "Save cookie settings" to apply your choice.
FunctionalThis website uses functional cookies which are required for the search function to work and to apply for jobs and internships.
AnalyticalOur website uses analytical cookies to make it possible to analyse our website and optimize its usability.
Social mediaOur website places social media cookies to show YouTube and Vimeo videos. Cookies placed by these sites may track your personal data.
This content is currently blocked. To view the content please either 'Accept social media cookies' or 'Accept all cookies'.
For more information on cookies see our privacy notice.