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Abstract

High update-to-data (UTD) ratio algorithms improve sample efficiency but are computationally expensive. We introduce
SPEQ, a RL method that combines low-UTD online training with periodic offline stabilization phases, where Q-functions
are fine-tuned using a fixed replay buffer. This reduces redundant updates on poor data and balance between sample and
compute efficiency. SPEQ achieves 40-99% fewer gradient updates and 27-78% less training time than SOTA methods
while matching or exceeding their performance.

Introduction

Context: Sample efficiency is a critical challenge in Reinforcement Learning (RL). Recent methods using a high
UTD ratio excel at reusing collected experience, leading to improved performance.

. Problem: High UTD methods dramatically increase training times and requires heavier computational demands.

@ Goal: Preserve the sample efficiency of high-UTD strategies while reducing the computational overhead.

SPEQ Method

@ Two-Phase Training.
Alternate between two training phases to balance efficiency and computational cost, like in offline RL

6.:7 Online Phase — Low UTD

Interact with the environment in real-time and perform lightweight updates after each step. This keeps training
responsive and stable.

'0“ Offline Stabilization Phase — High UTD

“% Pause environment interaction and perform intensive training using only the replay buffer. This phase enables high
UTD updates without additional data collection to stabilize the Q-Functions.

SPEQ

High UTD ratio approaches

Online low UTD ratio phase
Store

Periodic stabilization phase
Store

Interact Interact

SPEQ outperforms high-UTD baselines using up to 99% fewer gradient updates and 78% training time reduction.
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