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Reward Functions for Driving

Problem: Reliably evaluating driving behavior, particularly
in real-world settings, remains a major challenge.

e Traditional reward functions are typically handcrafted,
requiring privileged information.
e More recent video-prediction approaches define rewards

using likelihood-based metrics and often fail especially in
uncertain situations.

Our Approach: Instead, we train a driving reward model di-
rectly using observations from CARLA [1]. This approach can
potentially scale Reinforcement Learning (RL) to real-world
self-driving scenarios by removing the need for manual reward
engineering.
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Top row: Expert driving. Middle row: Crash.
Bottom row: High uncertainty. Unlike likelihood-based
approaches, our reward model separates uncertainty from
actual risk and reliably identifies expert behavior.

Contributions:

e COCA: CARLA driving dataset with counterfactuals.

o RELACS: A critical recipe for reward prediction aligned
with driving performance.

e Strong generalization to both real-world and rendered
driving scenarios.
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Methodology
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struct a dataset of counterfactual driving scenarios using the CARLA
simulator.

Qualitative Results
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Comparison on Youtube driving videos
Top row: Expert driving. Bottom row: Suboptimal driving.

of 1" frames, our goal is to learn a function f that maps the driving behavior observed in
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Quantitative Results

Comparison on Youtube driving videos

Label Metric Vista|2] VIPER|[3] RELACS
Expert 0.89 0.35 0.92
Near Crash  Mean 0.88 0.35 0.82
Crash 0.87 0.36 0.54
o7 0.15 -0.25 0.66
T 7 0.12 -0.20 0.55
Comparison on COCA Test set
GT Score Metric Vista|2] VIPER|[3] RELACS
0.0-0.2 0.91 0.32 0.37
0.2-0.4 0.90 0.36 0.45
0.4-0.6 Mear 0.90 0.35 0.59
0.6 -0.8 0.90 0.33 0.75
0.8-1 0.89 0.34 0.89
>1 0.91 0.39 0.99
o7 0.08 0.11 0.80
T 7T 0.05 0.08 0.62

Comparison on nuScenes (left) and NAVSIM (right)

Scenario Metric Subset Value
Method Mean Slower 0.19
Vista[2]  0.87 EP DC Real 0.29
VIPER[3] 0.32 Faster ~ 0.38
RELACS 0.92 Real 0.79
RD >V Rendered 0.61
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