

RELACS: Reward Learning for Autonomous Driving using Counterfactuals

Eray Çakar 1 Shadi Hamdan 1 Jiazhi Yang 2 Tianyu Li 2 Caojun Wang 2 Hongyang Li 2,3 Fatma Güney 1 ¹ KUIS AI Center, Koç University ² OpenDriveLab ³ The University of Hong Kong

Reward Functions for Driving

Problem: Reliably evaluating driving behavior, particularly in real-world settings, remains a major challenge.

- Traditional reward functions are typically handcrafted, requiring privileged information.
- More recent video-prediction approaches define rewards using likelihood-based metrics and often fail especially in uncertain situations.

Our Approach: Instead, we train a driving reward model directly using observations from CARLA [1]. This approach can potentially scale Reinforcement Learning (RL) to real-world self-driving scenarios by removing the need for manual reward engineering.

Top row: Expert driving. Middle row: Crash. Bottom row: High uncertainty. Unlike likelihood-based approaches, our reward model separates uncertainty from actual risk and reliably identifies expert behavior.

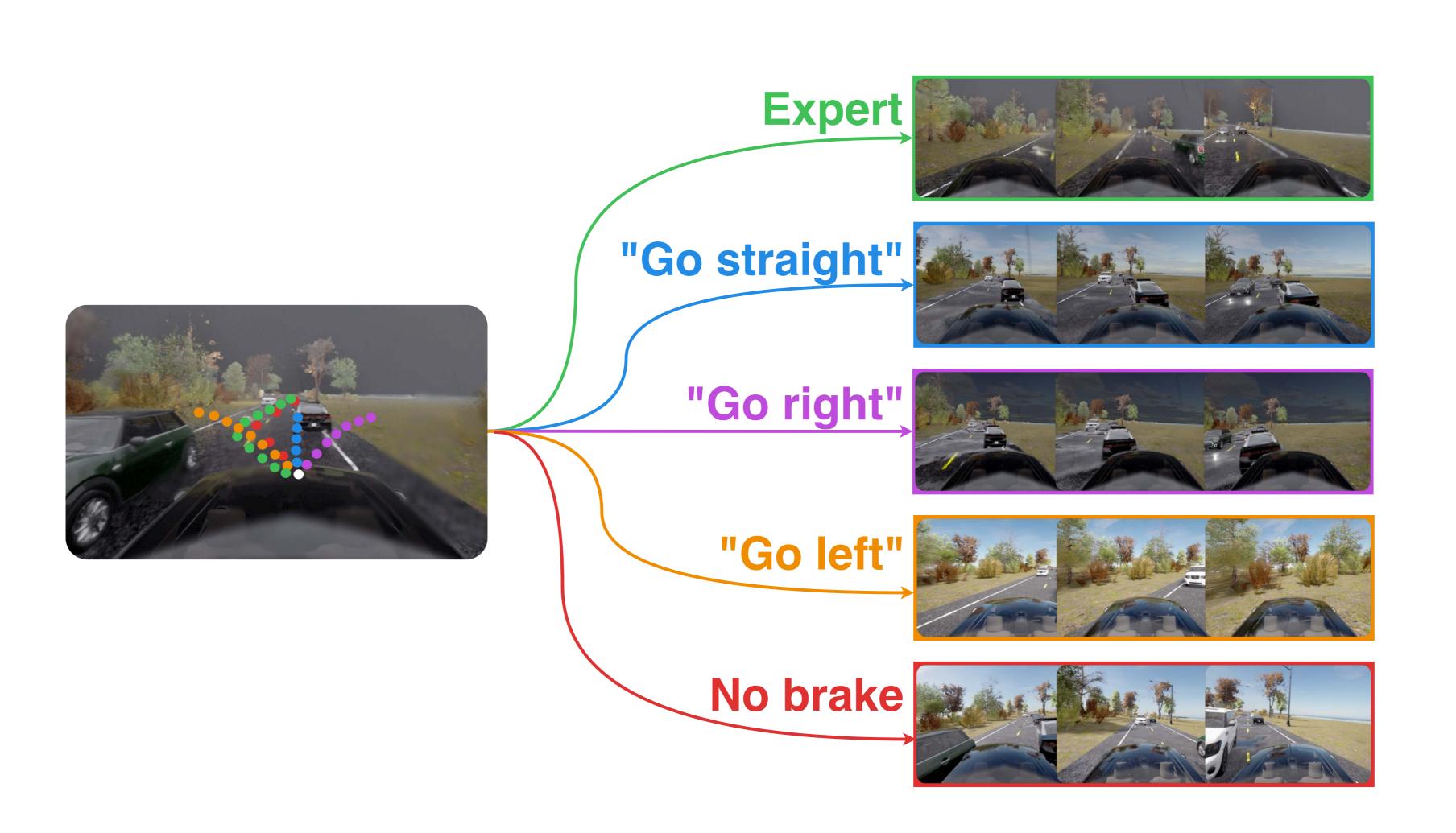
Contributions:

- COCA: CARLA driving dataset with counterfactuals.
- RELACS: A critical recipe for reward prediction aligned with driving performance.
- Strong generalization to both real-world and rendered driving scenarios.

Methodology

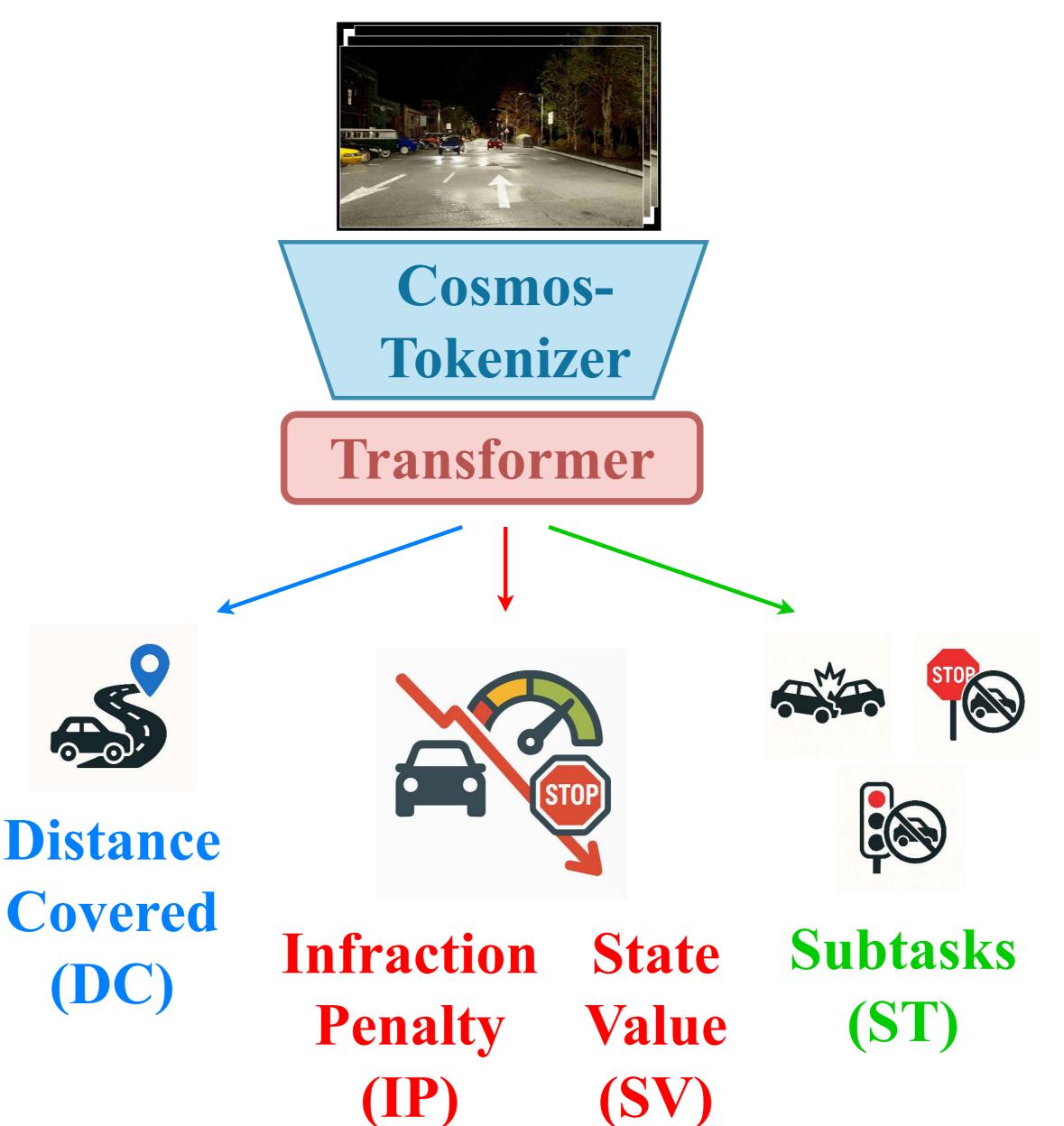
Given a video segment $\mathbf{x} \in \mathbb{R}^{T \times H \times W \times 3}$ of T frames, our goal is to learn a function f that maps the driving behavior observed in \mathbf{x} to a scalar reward $r: f(\mathbf{x}) \mapsto r$.

Counterfactual CARLA (COCA)



To ensure robustness across a wide range of driving behaviors, we construct a dataset of counterfactual driving scenarios using the CARLA simulator.

RELACS



Qualitative Results

Comparison on Youtube driving videos Top row: Expert driving. Bottom row: Suboptimal driving.

Quantitative Results

-		\		• 1
Comparison	on	Youtube	driving	videos

Label	Metric	Vista[2]	VIPER[3]	RELACS
Expert		0.89	0.35	0.92
Near Crash	Mean	0.88	0.35	0.82
Crash		0.87	0.36	0.54
	$\rho \uparrow$	0.15	-0.25	0.66
	$ au\uparrow$	0.12	-0.20	0.55

Comparison on COCA Test set

GT Score	Metric	Vista[2]	VIPER[3]	RELACS
0.0 - 0.2	Mean	0.91	0.32	0.37
0.2 - 0.4		0.90	0.36	0.45
0.4 - 0.6		0.90	0.35	0.59
0.6 - 0.8		0.90	0.33	0.75
0.8 - 1		0.89	0.34	0.89
≥ 1		0.91	0.39	0.99
	$\rho \uparrow$	0.08	0.11	0.80
	$ au\uparrow$	0.05	0.08	0.62

Comparison on nuScenes (left) and NAVSIM (right)

		Scenario	Metric	Subset	Value
Method	Mean			Slower	0.19
Vista[2]	0.87	EP	DC	Real	0.29
VIPER[3]	0.32			Faster	0.38
RELACS	0.92	RD	SV	Real	0.79
	——— KD	JV	Rendered	0.61	

References

- [1] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, "CARLA: An open urban driving simulator," 2017.
- [2] S. Gao, J. Yang, L. Chen, K. Chitta, Y. Qiu, A. Geiger, J. Zhang, and H. Li, "Vista: A generalizable driving world model with high fidelity and versatile controllability,"
- [3] A. Escontrela, A. Adeniji, W. Yan, A. Jain, X. B. Peng, K. Goldberg, Y. Lee, D. Hafner, and P. Abbeel, "Video prediction models as rewards for reinforcement learning," 2023.

Contact Information

ecakar20@ku.edu.tr Please contact us at: fguney@ku.edu.tr