OSCAR: Open-Set CAD Retrieval from a Language Prompt and a Single Image

OMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS-& REGELUNGSTECHNIK

Tessa Pulli¹, Jean-Baptiste Weibel², Peter Hönig¹, Matthias Hirschmanner¹, Markus Vincze¹

name@acin.tuwien.ac.at

¹Automation and Control Institute, TU Wien, Wien, Austria ²BOKU University, Institute for Forest Engineering, Wien, Austria

Problem Statement

- **6D object pose estimation** is key for object manipulation in robotics
- Training-based methods fail on unseen objects

Zero-shot methods

Onboarding

Rendered Views

GSAM

Segmentation

Candidate Objects

CLIP

 Do not require training but rely on a 3D object model for each instance

Option 1:

Manage database of object models manually → Prone to human errors

'cracker box":

"master chef can":

CLIP

Cosine

Similarity

Overview of OSCAR: In the onboarding stage, CAD models are rendered from multiple viewpoints and automatically captioned. At

filtering with CLIP, and (2) image-based matching with DINOv2, yielding the most similar CAD model for pose estimation.

inference, an object ROI is segmented from the input image using GroundedSAM. Retrieval is performed in two stages: (1) text-based

view 1.png: "Red box of cheez-it

view 2.png: "Cleaning supplies",

view 2.png: "Cracker box",

view n.png: "Cheez-it cracker";

Image Descriptions

Filtering

Candidate

images

view 1.png: "Coffee",

view n.png: "Food";

Option 2:

Input

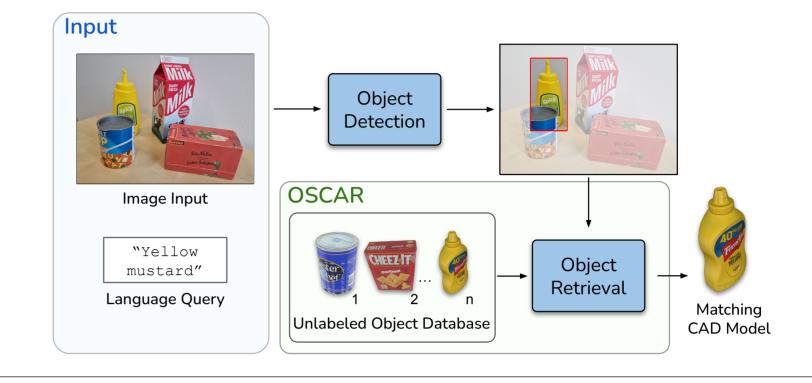
3D Object

Database

RGB Image

"Yellow

mustard"


Language Query

 Reconstruct objects on the fly → computational expensive, poor 3D models, time-intensive

VLM

Contribution

- OSCAR retrieves the matching CAD model from an unlabeled 3D database using an RGB image + language prompt. → **Database Management**
- Alternative approach to zero-shot pose estimation when the ground-truth model is not available.

Method

Object Retrieval

Cosine

Similarity

Matching CAD

Model

DIN02

DINO2

Onboarding Stage:

- Render each CAD model from 8 viewpoints
- Auto-generate captions with LLaVA
- Store captions + rendered views for retrieval
- Pipeline updates automatically when new models are added

Object Retrieval

Step 1: ROI Extraction

 Use GroundedSAM to segment the queried object

Step 2: Candidate Filtering (Text-based)

- Encode ROI with CLIP (image)
- Encode captions with CLIP (text)
- Compute cross-modal similarity
- Keep candidates above threshold (semantic sanity check)

Step 3: Final Retrieval (Image-based)

- Compare ROI embedding with candidate rendered views (DINOv2)
- Select the model with the highest visual similarity

Object Retrieval Results

Datasets:

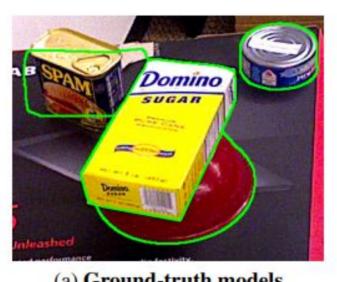
YCB-V (21 objects), HouseCat6D (194 objects), YCB-V + GSO (1030 distractors)

Metrics:

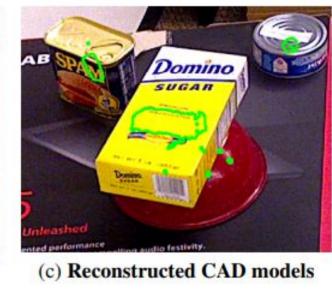
- mAP@k → retrieval accuracy
- Earth Mover's Distance (EMD) → geometric similarity

	YCB-V	HCat6D	YCB-V&GSO		
AP (%)	90.78	49.11	60.82		
EMD	0.005	0.027	0.030		

Table 1. Average EMD and AP across datasets


- High AP on YCB-V, lower AP on larger/ diverse sets (HCat6D: 49.1%)
- models are still geometrically similar

Setup


- Evaluated MegaPose with three CAD model sources:
 - Ground-truth models (baseline)
 - Most-frequently confused models retrieved by OSCAR
 - Reconstructed models (Nerfacto, 50 images)
- Dataset: **YCB-V** test scene

Pose Estimation Results

(a) Ground-truth models

(b) CADs retrieved with Oscar

Object	Trl. error [mm]			Rot. error [°]		
	GT	OSCAR	Reconst.	GT	OSCAR	Reconst.
Sugar	16.29	20.19	2577.20	42.44	4.30	42.44
Tuna	29.53	806.40	5814.08	22.76	51.17	22.76
Bowl	25.06	85.55	3006.89	99.83	115.23	99.83
Spam	185.26	665.33	4282.35	87.83	57.17	87.83

Results

- OSCAR-retrieved models → more accurate poses than reconstruction-based models
- Reconstruction → consistently failed, produced unreliable poses
- **Ground-truth** models → best results overall, but some objects remain challenging (e.g., canned meat)
- Even if OSCAR retrieves a confused but similar CAD model, MegaPose can still produce usable 6D poses.