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Context and Motivations

e Real-world social navigation requires robots to account for humans, static obstacles, and other robots.

e EXxisting work suffers from one or more key limitations, (i) operating only in open environments, (ii) being tailored to single-robot systems, and (iii)
relying on a unified representation for both controlled (robots) and uncontrolled entities (humans and obstacles), which limits their deployability.

e Multi-robot social navigation is still underexplored, partly due to a lack of lightweight simulators that support multiple robots, pedestrians in
constrained scenes.

Contributions Robot Obstacle LIDAR (FoV1) Detection (FoV2) Goal Human

.
e We propose HAMRON: a human-aware multi-robot navigation method that learns decentralized & : . { <)
policies with multi-agent RL for constrained (obstacle-rich) scenes.
e Hamron relies on a dual perception system: (i) a detection system to identify humans and other
robots in the scene; and (ii) a 2D LIDAR to handle static obstacles.
o We present a lightweight training environment that extends CrowdNav!! to multi-agent
scenarios, adding 2D LIDAR, static-obstacle simulation, occupancy maps, and heterogeneous
human policies (SF/ORCA).
e We compare against strong single-robot baselines and conduct ablation studies on scalability,
generalization, and human-policy robustness.

Proposed approach
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e Observations: The observation space comprises (i) 2D LiDAR scans for static geometry (FoV = 230°), (ii) intrinsic state and goal, and
(ili) an interaction graph of nearby humans and robots with short-horizon

e Perception encoders: LiDAR is encoded with a 1D CNN, while a GNN/GAT plus an interaction filter (GAT + Gumbel-Softmax mask) prunes
irrelevant interactions. The merged features are then sent to a GRU policy head.

« Rewards: The reward function combines a success bonus, a collision penalty, a potential-based progress term, and a prediction-intrusion
penalty that penalizes near-future incursions into others’ predicted trajectories.

o Control & learning: We use differential-drive actions under nonholonomic constraints and train with IPPO using decentralized training and
execution plus parameter sharing across the fleet.

Results
e Single-robot evaluation: HAMRON outperforms single-robot SOTA with e Scalability: performance remains stable from 1->5 robots when trained
the highest success rate (0.67) and the shortest travel time/length, but and tested at the same team size.
is slightly more assertive than HEIGHT!®! showing a higher collision rate. o Generalization: Training with larger teams transfers well to smaller
o Multi-robot evaluation: HAMRON outperforms LiDAR-Nav!*! and HEIGHT teams and remains robust when the number of humans increases at
in success (0.62), timeouts (0.05), and path length. MARL further test time.
improves performance by exposing the robots to additional coordination e Human-policy robustness: transfers across SF <> ORCA pedestrian
patterns during training. models without retraining (minor shifts in failure modes).
eton Y B et Y @ o nooot @ rraiectory Table: Ablation study of scalability, generalization, and robustness to human policies.
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Perspectives
o Stable MARL training: Move beyond DTDE by exploring CTDE (or hybrid) schemes with efficient, scalable critic architectures to

)
mitigate non-stationarity. -

e Social compliance: Integrate proxemics and social norms into the objective and policy (e.g., norm-aware rewards/constraints and
evaluation metrics) to achieve more socially appropriate navigation.




