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Perspectives 

Context and Motivations
Real-world social navigation requires robots to account for humans, static obstacles, and other robots.

Existing work suffers from one or more key limitations, (i) operating only in open environments, (ii) being tailored to single-robot systems, and (iii) 
relying on a unified representation for both controlled (robots) and uncontrolled entities (humans and obstacles), which limits their deployability.

Multi-robot social navigation is still underexplored, partly due to a lack of lightweight simulators that support multiple robots, pedestrians in 
constrained scenes.

We propose HAMRON: a human-aware multi-robot navigation method that learns decentralized 
policies with multi-agent RL for constrained (obstacle-rich) scenes.

Hamron relies on a dual perception system: (i) a detection system to identify humans and other 
robots in the scene; and (ii) a 2D LiDAR to handle static obstacles.

We present a lightweight training environment that extends CrowdNav[2] to multi-agent 
scenarios, adding 2D LiDAR, static-obstacle simulation, occupancy maps, and heterogeneous 
human policies (SF/ORCA).

We compare against strong single-robot baselines and conduct ablation studies on scalability, 
generalization, and human-policy robustness.

Stable MARL training: Move beyond D TDE by exploring CTDE (or hybrid) schemes with efficient, scalable critic architectures to 
mitigate non-stationarity.

Social compliance: Integrate proxemics and social norms into the objective and policy (e.g., norm-aware rewards/constraints and 
evaluation metrics) to achieve more socially appropriate navigation.

Proposed approach

Results
Single-robot evaluation: HAMRON outperforms single-robot SO TA with 
the highest success rate (0.67) and the shortest travel time/length, but 
is slightly more assertive than HEIGHT[3],showing a higher collision rate.

Multi-robot evaluation: HAMRON outperforms LiDAR-Nav[4] and HEIGHT 
in success (0.62), timeouts (0.05), and path length. MARL further 
improves performance by exposing the robots to additional coordination 
patterns during training.

Table: Comparison of our approach with baselines in single 
and multi-robot scenarios. SF policy is used for humans.
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Table: Ablation study of scalability, generalization, and robustness to human policies.

Observations:  The observation space comprises (i) 2D LiDAR scans for static geometry (FoV ≈ 230°), (ii) intrinsic state and goal, and  
(iii) an interaction graph of nearby humans and robots with short-horizon

Perception encoders: LiDAR is encoded with a 1D CNN, while a GNN/GAT plus an interaction filter (GAT + Gumbel-Softmax mask) prunes 
irrelevant interactions. The merged features are then sent to a GRU policy head.

Rewards: The reward function combines a success bonus, a collision penalty, a potential-based progress term, and a prediction-intrusion 
penalty that penalizes near-future incursions into others’ predicted trajectories.

Control & learning: We use differential-drive actions under nonholonomic constraints and train with IPPO using decentralized training and 
execution plus parameter sharing across the fleet.

Scalability: performance remains stable from 1→5 robots when trained 
and tested at the same team size.

Generalization: Training with larger teams transfers well to smaller 
teams and remains robust when the number of humans increases at 
test time.

Human-policy robustness: transfers across SF ↔ ORCA pedestrian 
models without retraining (minor shifts in failure modes).


