

Human-Aware Multi-Robot Navigation in Constrained Environments Using Multi-agent Reinforcement Learning

Takieddine Soualhi¹, Jacques Saraydaryan², Leaticia Matignon³

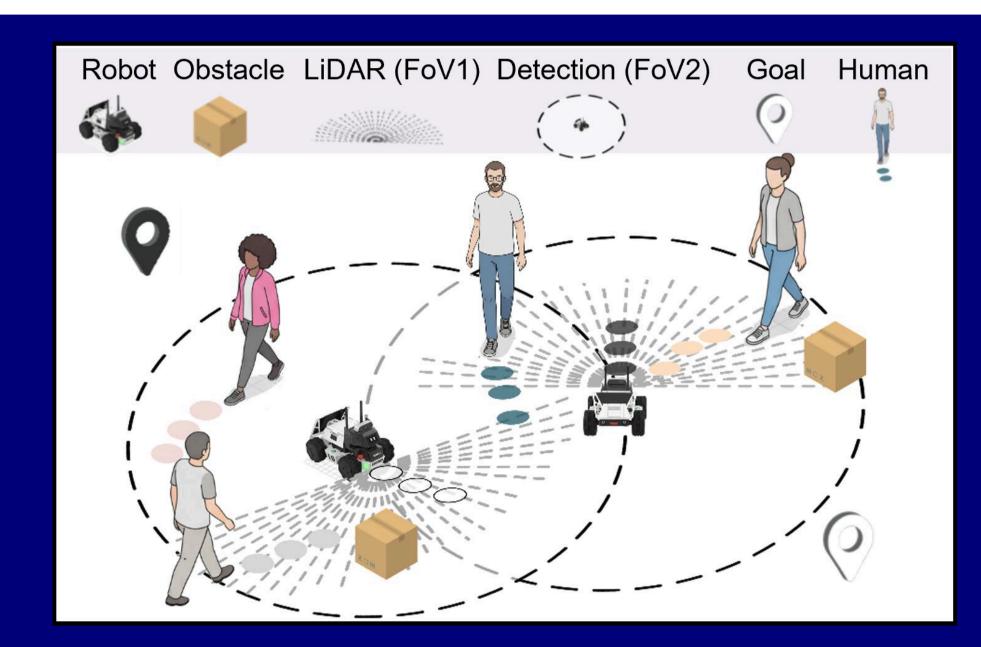
INRIA-INSA CHROMA team, Villeurbanne, France¹
CPE Lyon, INRIA-INSA CHROMA team, Villeurbanne, France²
Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, Villeurbanne, France³

Context and Motivations

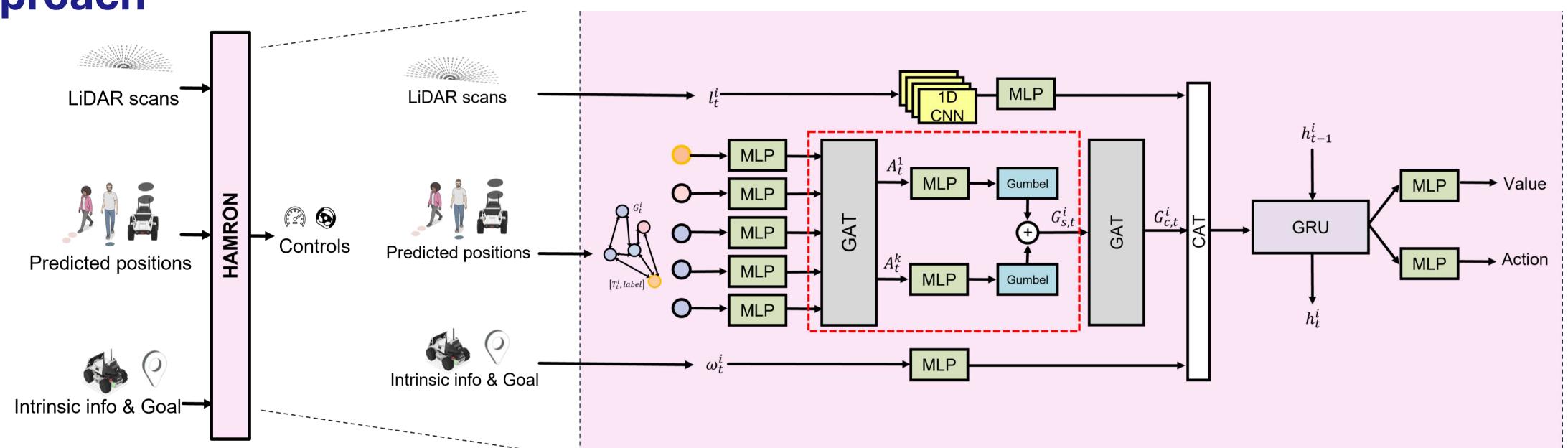
- Real-world social navigation requires robots to account for humans, static obstacles, and other robots.
- Existing work suffers from one or more key limitations, (i) operating only in open environments, (ii) being tailored to single-robot systems, and (iii) relying on a unified representation for both controlled (robots) and uncontrolled entities (humans and obstacles), which limits their deployability.
- Multi-robot social navigation is still underexplored, partly due to a lack of lightweight simulators that support multiple robots, pedestrians in constrained scenes.

Contributions

- We propose HAMRON: a human-aware multi-robot navigation method that learns decentralized policies with multi-agent RL for constrained (obstacle-rich) scenes.
- Hamron relies on a dual perception system: (i) a detection system to identify humans and other robots in the scene; and (ii) a 2D LiDAR to handle static obstacles.
- We present a lightweight training environment that extends CrowdNav^[2] to multi-agent scenarios, adding 2D LiDAR, static-obstacle simulation, occupancy maps, and heterogeneous human policies (SF/ORCA).
- We compare against strong single-robot baselines and conduct ablation studies on scalability, generalization, and human-policy robustness.



Proposed approach



- **Observations:** The observation space comprises (i) 2D LiDAR scans for static geometry (FoV ≈ 230°), (ii) intrinsic state and goal, and (iii) an interaction graph of nearby humans and robots with short-horizon
- **Perception encoders:** LiDAR is encoded with a 1D CNN, while a GNN/GAT plus an interaction filter (GAT + Gumbel-Softmax mask) prunes irrelevant interactions. The merged features are then sent to a GRU policy head.
- **Rewards:** The reward function combines a success bonus, a collision penalty, a potential-based progress term, and a prediction-intrusion penalty that penalizes near-future incursions into others' predicted trajectories.
- Control & learning: We use differential-drive actions under nonholonomic constraints and train with IPPO using decentralized training and execution plus parameter sharing across the fleet.

Results

- Single-robot evaluation: HAMRON outperforms single-robot SOTA with the highest success rate (0.67) and the shortest travel time/length, but is slightly more assertive than HEIGHT^[3], showing a higher collision rate.
- Multi-robot evaluation: HAMRON outperforms LiDAR-Nav^[4] and HEIGHT in success (0.62), timeouts (0.05), and path length. MARL further improves performance by exposing the robots to additional coordination patterns during training.

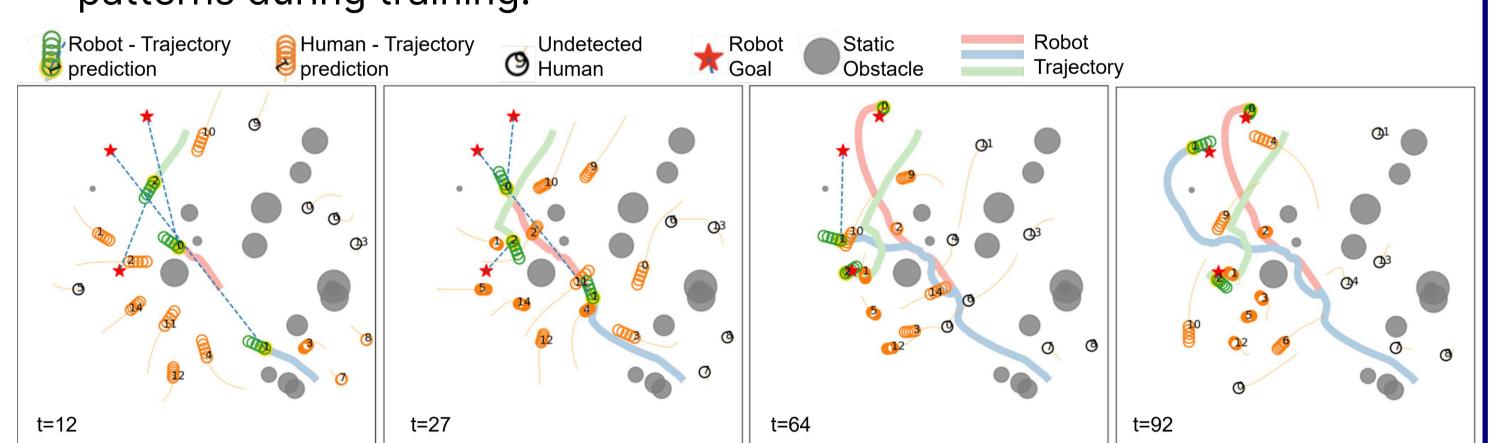


Table: Comparison of our approach with baselines in single and multi-robot scenarios. SF policy is used for humans.

	SSS	sion	ont	sion atio	rel ime	Travel - Length	Train		Test	
Method	Success →	$\underset{\leftarrow}{\text{Collision}}$	$\begin{array}{c} \text{Timeout} \\ \leftarrow \end{array}$	Intrusion ← Ratio	$\begin{array}{c} \text{Travel} \\ \leftarrow \text{Time} \end{array}$	$\begin{array}{c} \text{Tra} \\ \leftarrow \text{L} \end{array}$		Н	R	Н
LiDAR-Nav	0.60	0.22	0.17	19.64	13.77	14.50				
HEIGHT	0.64	0.20	0.16	15.22	13.51	13.88	1	15	1	15
HAMRON (ours)	0.67	0.28	0.05	19.78	12.26	11.80				
LiDAR-Nav	0.51	0.28	0.21	13.06	14.13	15.00	1	15		
HEIGHT	0.56	0.33	0.11	13.41	12.72	12.40	1	15	3	15
HAMRON (ours)	0.62	0.33	0.05	15.51	12.25	11.93	1	15		
HAMRON (ours)	0.69	0.25	0.05	15.75	12.25	12.03	3	15		

- Scalability: performance remains stable from 1→5 robots when trained and tested at the same team size.
- Generalization: Training with larger teams transfers well to smaller teams and remains robust when the number of humans increases at test time.
- Human-policy robustness: transfers across SF \leftrightarrow ORCA pedestrian models without retraining (minor shifts in failure modes).

Table: Ablation study of scalability, generalization, and robustness to human policies.

Method		Success →	Collision ←	$\begin{array}{c} \text{Timeout} \\ \leftarrow \end{array}$	Intrusion ← Ratio	Travel ← Time	$\begin{array}{c} \text{Travel} \\ \leftarrow \text{Length} \end{array}$	R Train	Н	Human Policy	R Test	Н	Human Policy
	(a)	0.67	0.28	0.05	19.78	12.26	11.80	1	15	SF	1	15	SF
Scalability	(b)	0.69	0.27	0.04	16.46	12.12	11.58	3	15	SF	3	15	SF
	(c)	0.69	0.25	0.05	15.75	12.25	12.03	4	15	SF	4	15	SF
	(d)	0.68	0.29	0.03	15.63	12.19	11.57	5	15	SF	5	15	SF
	(e)	0.58	0.36	0.06	14.12	12.43	11.95	1	15	SF	5	15	SF
	(\mathtt{f})	0.62	0.34	0.04	15.58	12.08	11.38	3	15	SF	5	15	SF
Generalization	(g)	0.78	0.19	0.03	20.52	12.33	11.67	5	15	SF	1	15	SF
	(h)	0.73	0.24	0.03	16.98	12.24	11.76	5	15	SF	3	15	SF
	(i)	0.83	0.14	0.03	15.01	12.59	12.21	1	15	SF	1	8	SF
	(j)	0.82	0.17	0.01	16.04	11.89	11.50	1	8	SF	1	8	SF
	(k)	0.67	0.31	0.02	22.86	12.33	11.22	1	8	SF	1	15	SF
	(1)	0.64	0.32	0.04	16.58	11.89	12.27	3	15	SF	3	15	ORCA
Human policy robustness	(m)	0.64	0.28	0.08	13.35	12.58	12.51	3	15	ORCA	3	15	ORCA

[1] T. Soualhi et al., "Human-aware multi-robot navigation in constrained environments using multi-agent reinforcement learning", under review at IEEE ICRA, 2026. [2] L. Shuijing, et al., "Intention aware robot crowd navigation with attention-based interaction graph", IEEE ICRA, 2023. [3] L. Shuijing et al., "Height: Heterogeneous interaction graph transformer for robot navigation in crowded and constrained environments", arXiv preprint 2024. [4] B. Han et al, "Mobile robot navigation based on deep reinforcement learning with 2d-lidar sensor using stochastic approach", IEEE ISR, 2021.

Perspectives

- Stable MARL training: Move beyond DTDE by exploring CTDE (or hybrid) schemes with efficient, scalable critic architectures to mitigate non-stationarity.
- Social compliance: Integrate proxemics and social norms into the objective and policy (e.g., norm-aware rewards/constraints and evaluation metrics) to achieve more socially appropriate navigation.

