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Problem Formulation & Motivation

Diego Porres *

With Imitation Learning (IL), driving policies seek to approximate
the driving behavior of the expert driver that collects the train-
ing data. Vision-based end-to-end driving trained via IL offer af-
fordable solutions for autonomous driving, albeit they require large
amounts of data in order to properly converge.

In this paper, we study the effects of directly optimizing the at-
tention maps on the driving capabilities of these models and their
interpretability. We show that the model's sample efficiency im-
pro%/es, highlighted when there is a low amount of data to train
with.

----- 2: What if we directly optimize the self-attention weights?

Yi Xiao?

'Computer Vision Center

Gabriel Villalonga* Alexandre Levy*?

2Universitat Autonoma de Barcelona

® Our proposal: the Attention Loss Lt

We base our work on the current pure vision-based state-of-the-
art end-t-end driving model CIL++.
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- The model's interpretability is
improved, as the attention
weights now weakly segment

the classes of interest
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vanilla CIL++, and is robust to
noisy attention masks.
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Future Work

L.+ could be applied not only to the average attention weight
of a layer in the Transformer Encoder, but to their individual

heads. Likewise, the attention masks could also come from hu-
man saliency maps collected during driving.

https.//blog.diegoporres.com/guiding-attention-e2e/

We wish to exploit the distributional property of the attention
weights of the Transformer Encoder. For this, we create ground-
truth single-channel synthetic attention masks M, ; for each cam-

era ¢ based on Semantic Segmentation images (containing the
classes of interest), filtered within a depth threshold.

We define the Attention Loss L.+ as the KL Divergence be-

tween the (downscaled, concatenated, and normalized) ground-
truth saliency maps M; and the average attention weights of layer

| of the Transformer Encoder A! at time ¢.

2. Attention Guidance Learning
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A ~ 4x less training data for the same driving capability!
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Latt IS robust to noisy saliency masks

Obtaining the synthetic attention masks for real-world data will re-
sult in noisy masks. We mimic this noise via a function f that
corrupts the mask M, ; using depth-aware Perlin noise, with more

granular disturbances on larger objects. As a proxy, we train a UNet
to predict the mask M, given an input image x; ;.

Table 1. Masks as different types of input and effect of noisy masks. Models
trained with 14 hours of data from TownO1 and tested in Town02, using new
weathers.

SR, 1 DS 4 RC IS 1

CIL++ 41.33 £8.08 60.45 £4.60 73.03+=4.18 0.77+=0.03
w/SM 42.00 £7.21 59.29 £+£5.49 70.12+4.32 0.78 = 0.02
W/HM 66.00 £9.17 77.34 £6.93 84.32 +5.83 0.87 +0.04
W/ Lt 79.33 = 13.01 85.67 &= 7.84 91.13 £6.21 0.92 £ 0.05

W/SM + F(M @t)a 35.33 £ 7.02 56.38 4+ 1.32 68.3340.58 0.77 % 0.01

w/HM + f( it ) 66.00 £7.21 76.36 £ 3.72 83.46 £4.48 0.87 & 0.01
W/Latt + f(M; ) P 71.33 £6.11 80.36 +6.88 89.46 + 3.97 0.87 + 0.05

@ Noisy predicted Masks (Training + Validation)  ° Noisy Masks (Training only)

Table 2. Effect of using L.+ Iin the high-data regime for multi-lane towns in
CARLA. Models trained with 55 hours of driving data and tested in the unseen
TownO05, using new weathers.

SR, 1 DS 1 RC 1 IS 1

ClL++ 70.00 £5.00 36.46 £4.03 79.69 £ 3.84 0.51 £0.04
W/‘Catt 73.33 =5.77 58.23 +4.71 82.88 =1.28 0.70 4= 0.03
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