

Zeren Jiang¹, Chuanxia Zheng¹, Iro Laina¹, Diane Larlus², Andrea Vedaldi¹ ¹Visual Geometry Group, University of Oxford ²Naver Labs Europe

Motivation

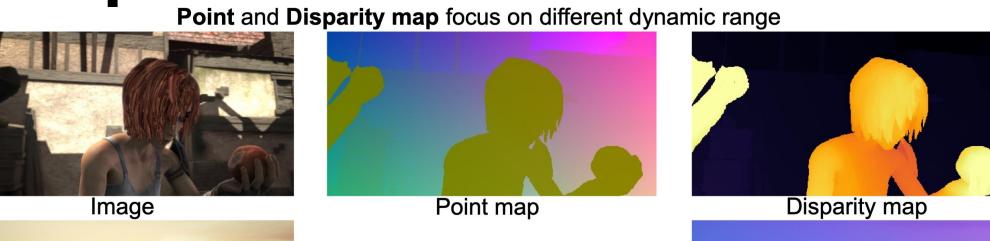
Goal: Reconstruct dynamic scenes from Challenges: Limited 4D data with groundmonocular in-the-wild RGB videos truth geometric annotations for training

Solution: Repurposing video diffusion model for 4D scene reconstruction

Contribution

- Show that pre-trained video generators work well as priors for 4D reconstruction
- A multi-modal geometric representation that helps the video diffusion model to learn consistent geometry during training.
- A lightweight multi-modal alignment that fuses partially redundant geometric modalities at test time for coherent and robust 4D reconstruction.

Representation



Evaluation

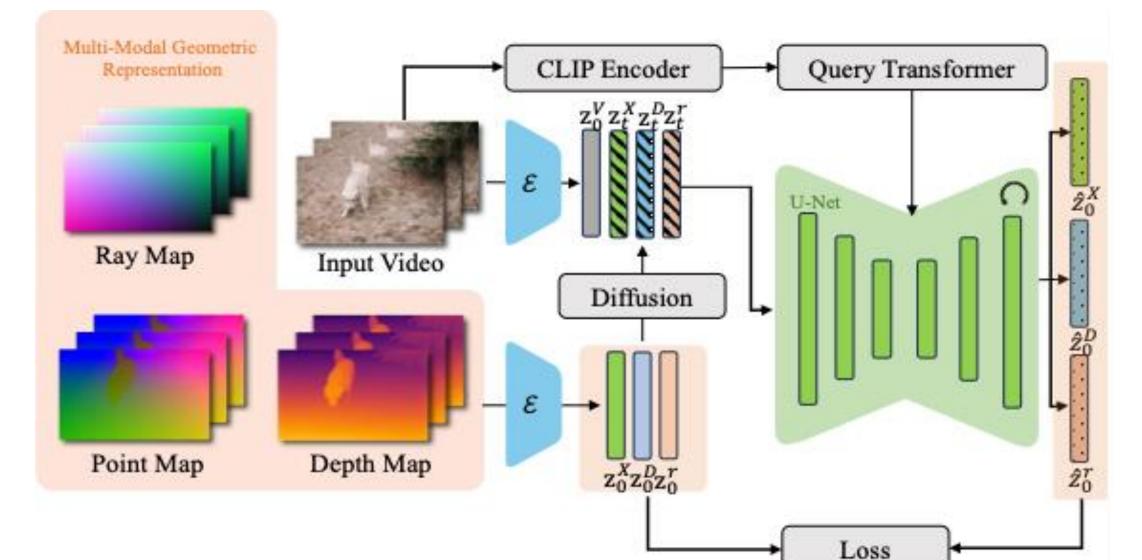
Category	Method	Sintel		Bonn		KITTI	
Cutogory	1/1001104	Abs Rel↓	$\delta < 1.25 \uparrow$	Abs Rel ↓	$\delta < 1.25 \uparrow$	Abs Rel↓	$\delta < 1.25 \uparrow$
Single-frame depth	Marigold	0.532	51.5	0.091	93.1	0.149	79.6
	Depth-Anything-V2	0.367	55.4	0.106	92.1	0.140	80.4
Video depth	NVDS	0.408	48.3	0.167	76.6	0.253	58.8
	ChronoDepth	0.687	48.6	0.100	91.1	0.167	75.9
	DepthCrafter*	0.270	<u>69.7</u>	0.071	97.2	<u>0.104</u>	<u>89.6</u>
Video depth & Camera pose	Robust-CVD	0.703	47.8	-	-	_	-
	CasualSAM	0.387	54.7	0.169	73.7	0.246	62.2
	MonST3R	0.335	58.5	0.063	96.4	0.104	89.5
	Ours	0.205	73.5	0.059	97.2	0.086	93.7

Video_depth estimation on Sintel, Bonn, and KITTI datasets.

Training			Inference			Video Depth		Camera Pose		
Point Map	Depth Map	Ray Map	Point Map	Depth Map	Ray Map	Abs Rel↓	$\delta < 1.25 \uparrow$	ATE↓	RPE trans \downarrow	RPE rot ↓
✓	-	-	 	-	-	0.232	71.3	0.335	0.076	0.731
✓	/	✓	✓	-	-	0.223	72.5	0.237	0.070	0.566
✓	✓	✓	-	✓	-	0.211	73.4	-	-	-
✓	✓	✓	-	-	✓	-	-	0.268	0.192	1.476
✓	✓	✓	✓	✓	✓	0.205	73.5	0.185	0.063	0.547

Ablation study for the different modalities of the geometric representation.

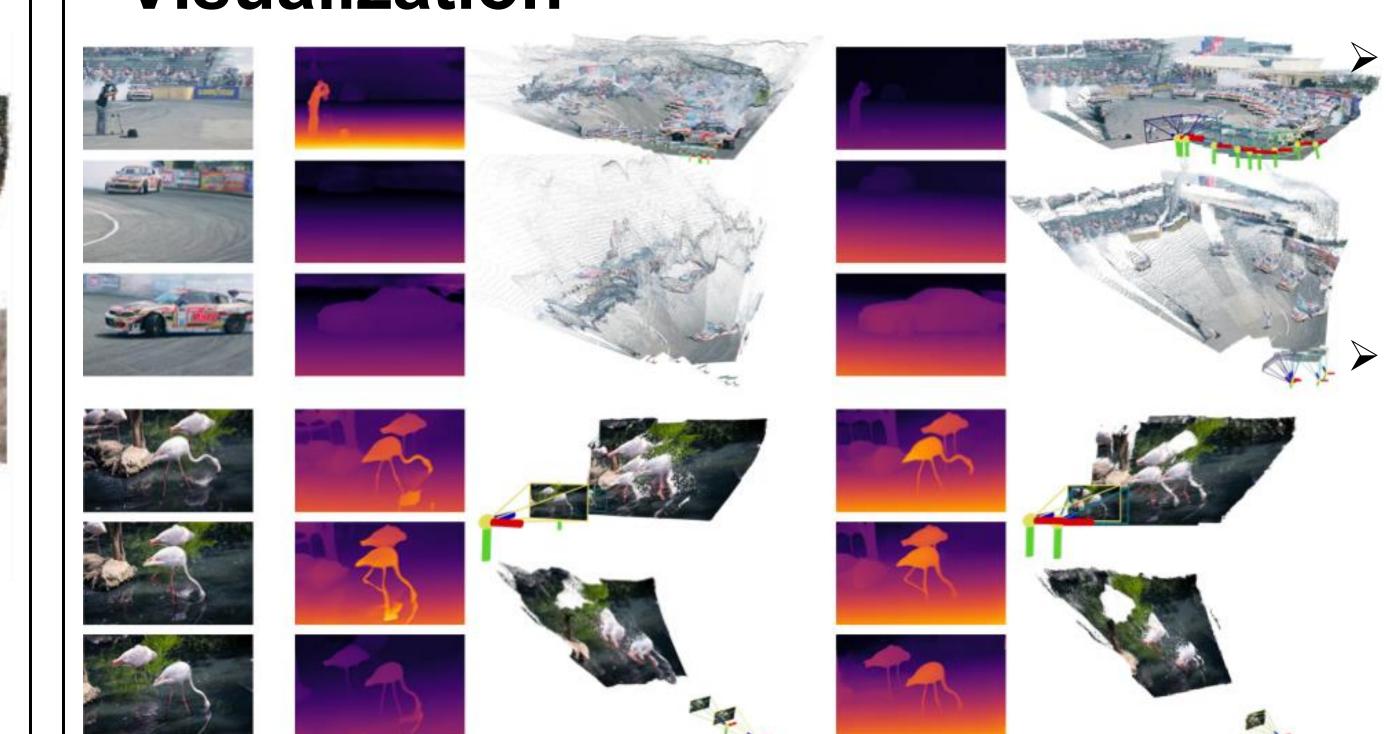
- Method



We cast 4D video reconstruction as conditional generation of 4D latent features $\mathbf{z}_t^{\mathbf{X}}, \mathbf{z}_t^{\mathbf{D}}, \mathbf{z}_t^{\mathbf{r}}$ from an RGB video encoder adapted for point, depth and camera ray encoding. The input video is injected as condition via cross-attention in the denoising U-Net, after and a query transformer.

During **inference**, iteratively denoised latent features $\widehat{\mathbf{z}_0^X}, \widehat{\mathbf{z}_0^D}, \widehat{\mathbf{z}_0^r}$ are decoded by the fine-tuned VAE decoder, followed by multi-modal alignment optimization for coherent 4D reconstruction.

Visualization



Group-wise inference allow **fast motion** to be reconstructed consistently

Prior geometry knowledge from the video generator enables accurate reconstruction under deceptive cues, (e.g., reflections)