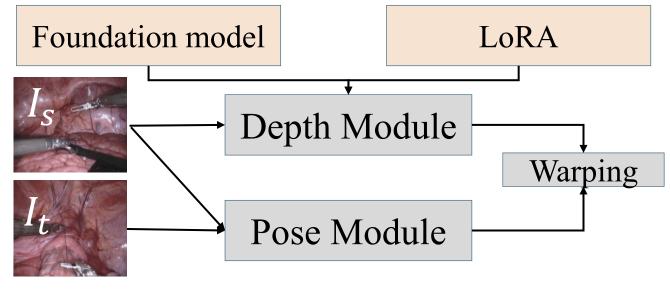
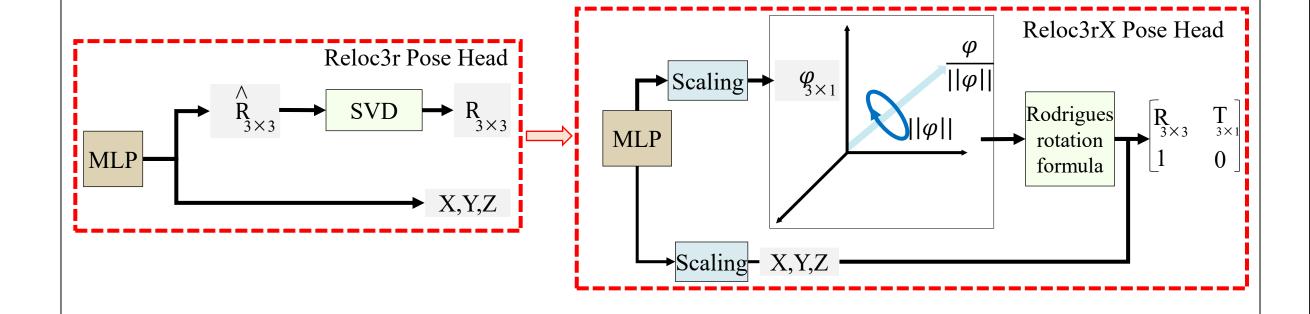
Endo-FASt3r: Endoscopic Foundation model Adaptation

for Structure from motion


Mona Sheikh Zeinoddin^{1,2}, Mobarak I. Hoque^{1,4}, Zafer Tandogdu^{3,6}, Greg L. Shaw³, Matthew J. Clarkson^{1,4}, Evangelos B. Mazomenos^{1,4}, Danail Stoyanov^{1,5}

¹ Hawkes Institute, University College London, London, UK ² Institute of Health Informatics, University College London, London, UK ³ Dept. of Urology, University College London Hospitals, London, UK ⁴ Dept. of Medical Physics & Biomedical Engineering, University College London, UK ⁵ Dept. of Computer Science, University College London, UK ⁶ Division of Surgery and Interventional Science, University College London, UK

Motivation & Background


- Camera Pose & Depth estimation is essential to achieve 3D scene understanding in robotic-assisted surgery.
- The self-supervised reprojection loss [2] pipeline is widely used in the surgical domain due to the lack of ground truth data.

- Previous works have investigated the use of foundation models in the depth module via Low-Rank Adaptation (LoRA)^[1] -based techniques.
- **Major limitations** of current literature:
- No work has investigated the use of **foundation models** in the **pose module**.
- The limiting low rank update space of LoRA-based approaches.

Endo-FASt3r Contributions

- In this work, Endo-FASt3r: Endoscopic Foundation model Adaptation for Structure from motion, we introduce:
- **Reloc3rX**: Extending the foundation model Reloc3r^[3] by designing the Axis Pose Head to address scale-mismatch.

DoMoRA: Enabling both **Low- and High-rank updates**.

References

[1] Hu, Edward S, et al. "LoRA: Low-Rank Adaptation of Large Language Models." In *ICLR* (2022) [2] Shao, Shuwei, et al. "Self-

supervised monocular depth and ego-motion estimation in endoscopy: Appearance flow to the rescue." In ICRA (2021) [3] dong, Siyan, et al. "Reloc3r." In CVPR (2025)

Let's discuss

Can you answer these questions:

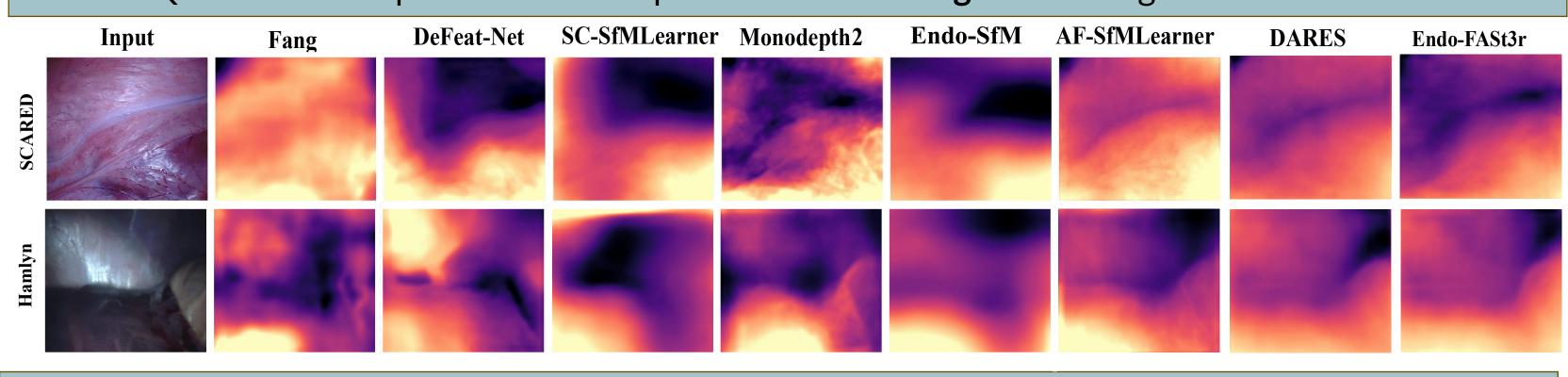
- Why was the change to Reloc3r's pose head necessary?
- We used DUSt3r, MASt3r and MICKEY instead of Reloc3r and none worked, what do you think was the reason?
- What is the main difference of LoRA and DoMoRA?

Interested in our work?

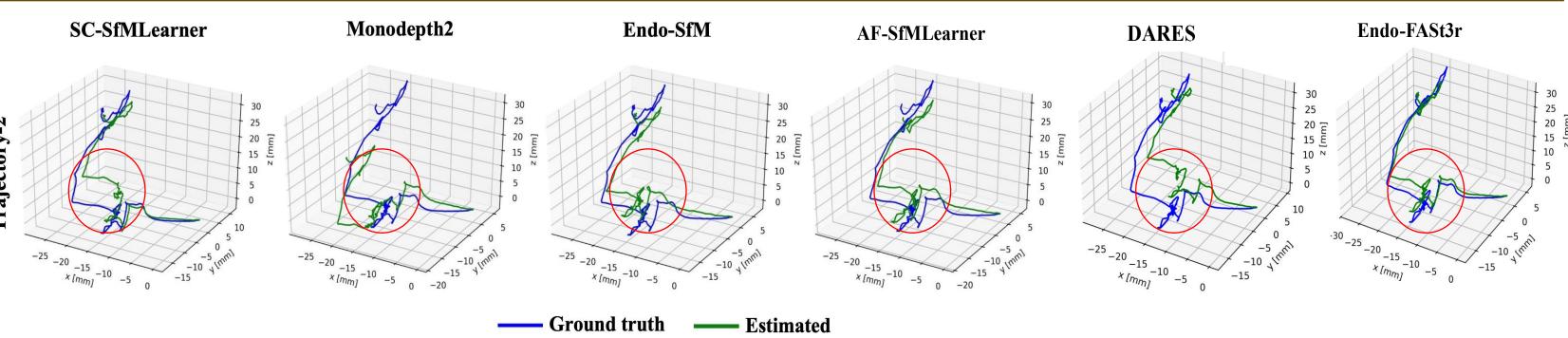
Github:

Paper:

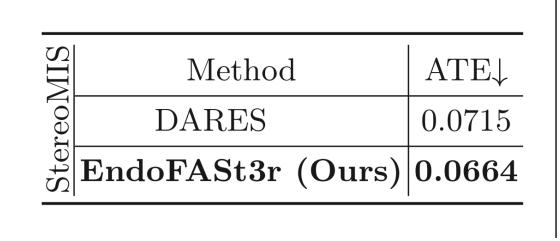
Endo-FASt3r Architecture DA V2 decoder DA V2 encoder Source Frame: I_s Head Estimated Depth map of source frame: D_s Reloc3rX encoder Reloc3rX decoder **DoMoRA** to weight W Sharing weights Cross-Attention Target Frame: *I_t* X,Y,ZSynthetic Target Frame: $I_{S \to t}$ Multiscale-SSIM reprojection loss + Tihkonov regulariser

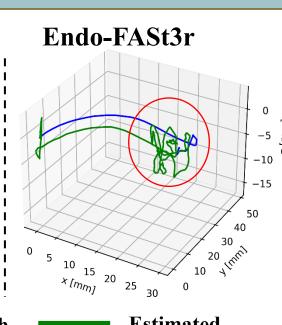

Results & Conclusion

Trained on the SCARED dataset and Evaluation performed on the rigid SCARED, Hamlyn and non-rigid StereoMIS datasets.


Comparison on rigid scenes with benchmark methods in depth estimation and pose estimation matrices

	Method	AbsRel↓	SqRel↓	RMSE↓	$\delta\uparrow$	ATE-T1 ↓	ATE-T2↓	Total	Train	Speed
SCARED	DeFeat-Net	0.077	0.792	6.688	0.941	0.1765	0.0995	14.8	14.8	_
	SC-SfMLearner	0.068	0.645	5.988	0.957	0.0767	0.0509	14.8	14.8	_
	Monodepth2	0.069	0.577	5.546	0.948	0.0769	0.0554	14.8	14.8	_
	Endo-SfM	0.062	0.606	5.726	0.957	0.0759	0.0500	14.8	14.8	_
	AF-SfMLearner	0.059	0.435	4.925	0.974	0.0757	0.0501	14.8	14.8	8.0
	Yang et al.	0.062	0.558	5.585	0.962	0.0723	0.0474	2.0	2.0	_
	Zero-Shot DA V2	0.091	1.056	7.601	0.916	_	-	_	-	_
	Zero-Shot Reloc3r	_	-	-	-	0.0938	0.0735	_	-	-
	DARES	0.052	0.356	4.483	0.980	0.0752	0.0498	24.9	2.88	15.6
	EndoFASt3r (Ours)	0.051	0.354	4.480	0.998	0.0702	0.0438	24.9	2.93	19.1
$\left \operatorname{Hamlyn} \right $	Endo Depth & Motion	0.185	5.424	16.100	0.732	_	_	_	_	
	AF-SfMLearner	0.168	4.440	13.870	0.770	_	-	14.8	14.8	7.7
На	EndoFASt3r (Ours)	0.166	4.529	13.718	0.778	-	-	24.9	2.93	19.1




Qualitative comparison of our ego-motion estimation on rigid scenes against benchmarks

Comparison of our ego-motion estimation on **non-rigid scenes** against the second-best approach

Interested in seeing a video of our results?

- Endo-FASt3r marks the first framework to use foundation models for pose estimation in surgical environments, and it does so with NO ground truth data.
- Endo-FASt3r surpasses all SOTA methods, reaching an improvement of 9.34% in camera pose estimation and 2% in depth estimation over the nearest competitor.

