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Motivation & Background Endo-FASt3r Architecture
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Endo-FASt3r Contributions Results & Conclusion

 Trained onthe SCARED dataset and Evaluation performed on the rigid SCARED, Hamlyn
* [nthis work, Endo-FASt3r: Endoscopic Foundation model and non-rigid StereoMIS datasets.

Adaptation for Structure from motion, we introduce:

Comparison on rigid scenes with benchmark methods in depth estimation and pose estimation matrices

» Reloc3rX: Extending the foundation model Reloc3r!3l by Method AbsRel] SqRell RMSE| 61 | ATE-T1] ATET2/ | Total Train | Speed
designing the Axis Pose Head to address scale-mismatch. DeFeat-Net 0.077 0792  6.688  0.941 | 0.1765 0.0995 | 14.8  14.8
SC-SfMLearner 0.068  0.645  5.988  0.957 | 0.0767 0.0509 | 14.8  14.8
e e e . Monodepth? 0.060 0577 5546  0.948 | 0.0769 0.0554 | 14.8  14.8
____________________________ | , RelocdrX Posc Head | " Endo-SfM 0.062  0.606 5726  0.957 | 0.0759 0.0500 | 14.8  14.8 i
i Reloc3r Pose Head . | — | e | & AF-SfMLearner 0.059  0.435  4.925 0974 | 0.0757 0.0501 | 14.8 14.8 | 8.0
| I S e I : | [iScaling™ %, Q ¢ —— . = Yang et al. 0.062  0.558 5585  0.962 | 0.0723 0.0474 20 2.0 i
i 33 EEJ AN R P loll e _’Fm ! O | Zero-Shot DA V2 0.091  1.056  7.601  0.916 i i i i
| | MLP — L formula 1 0] Zero-Shot Reloc3r - - - - 0.0938 0.0735 - - -
| coxyy || | DARES 0.052 __ 0.356___ 4.483 __ 0.080 | _0.0752 0.0408] | 24.9 2.88 | 156
N s i | EndoFASt3r (Ours) | [0.061  0.354 4.480 0.998 | 0.0702 __ 0.0438| | 249 293 | 19.1
] Scaling~ X,Y,Z _i £ | Endo Depth & Motion | 0.185 5424 16100  0.732 - i i i i
"""""""""""""""""""""""""" = AF-SfMLearner 0.168  4.440 13.870  0.770 i i 148 148 | 7.7
= | EndoFASt3r (Ours) | 0.166 4529 13.718 0.778 i i 249 2.93 | 10.1

« DoMoRA: Enabling both Low- and High-rank updates.

Qualitative comparison of our depth estimation on rigid scenes against benchmarks
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surgical environments, and it does so with NO ground truth data.
 Endo-FASt3r surpasses all SOTA methods, reaching an improvement of 9.34% in camera
pose estimation and 2% in depth estimation over the nearest competitor.
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