

Distributed MPC for motion planning of multiple drones
Cong Khanh DINH 1 Ionela PRODAN 1 Florin STOICAN 2

1Univ. Grenoble Alpes, Grenoble INP†, LCIS, F-26000, Valence, France
†Institute of Engineering and Management Univ. Grenoble Alpes
Email: {cong-khanh.dinh, ionela.prodan}@lcis.grenoble-inp.fr

2Faculty of Automation Control and Computer Science, University Politehnica of Bucharest, Romania,
Email: florin.stoican@upb.ro

Context

We address the motion planning problem for multiple drones
and on-the-fly trajectories update.

Provide motion planning mechanism including trajectory
generation and tracking which ensures that the agents can
reach the a priori given targets, avoid collision and
minimize energy costs.

Apply distributed control strategies for the agents task
assignment.

Experimentally test the algorithms over the Crazyflie
nanoquadcopters.

Trajectory parameterization using B-splines

B-splines have useful properties (such as convexity, local support, differentiability), allowing to obtain smooth trajectories and fast
reconfigurations prodan2019necessary.
Given open knot-vector τ = {τ1, τ2, ..., τm}, the B-spline curve z(t) is characterized as following:

z(t) = PBp(t), ∀ t ∈ [τ1, τm]

where: P = [P0, P1, ..., PN] collects N + 1 control points,
Bp(t) = [B0,p(t), B1,p(t), ..., BN,p(t)] is the associated set of basis functions.
In our framework the control input is expressed in terms of the control points:

u(t) = P(2)Bp−2(t)

where P(2) = PM2 is the control points of the r
th derivatives of the curve.

Problem statement

Given Na agents with known dynamics, compute input for
each agent such that:

The agents do not collide

The agents remain within working space

After a time Tf , the agents are sufficiently close to their
desired position

Model of the agents

We consider the model of the nano-quadcopter Crazyflie
which is naturally non-linear. By applying the flatness-based
linearization approach in do2021analysis, we can obtain an
exact linearized model under the form of a double integrator
dynamics:

xi [k + 1] = Axi [k] +Bui [k] (1)

where A =

[
I3 hI3
03 I3

]
and B =

[
h2

2 I3
hI3

]
.

The state of the ith agent xi [k] is defined by the position
and velocity of the vehicle, i.e xi [k] = (p⊺

i [k] ,v
⊺
i [k])

⊺ ∈ R6,
the control input ui [k] = ai [k] ∈ R3 is the acceleration of
the vehicle.

Prediction model for the MPC (Model Predictive Control):

Let us consider the (̂.)[k|kt] denotes the predicted value of

(.)[k + kt] with information available at kt. Hence, the
prediction model is given by:

x̂i[k + 1|kt] = Aix̂i[k|kt] +Biûi[k|kt] (2)

with k ∈ {0, ..., Np − 1} where Np is the prediction horizon.

Distributed MPC algorithm

In the control loop, the optimization problems of every agent are solved in parallel using the preceding prediction data broadcast among the agents. The
following cost function is minimized:

min
Pi,{Φi,j}j∈1,...,Na

L̄i(Pi,Φi,1,Φi,2, ...,Φi,Na
)

S.t.



Dynamical model (1)(2)

ui[k|kt] = P
(2)
i Bp−2(tk)

umin ≤ ûi[k|kt] ≤ umax

pmin ≤ p̂i[k|kt] ≤ pmax

Soft constraints for collision avoidance dinh2024online: ∥ p̂i[k|kt]− p̂j[k] ∥22≥ rmin + Φi,j

where:

L̄i(Pi,Φi,j) = Li(Pi) + Ci({Φi,j})

=

Np∑
k=1

∥ p̂i[k|kt]− pf
i ∥Qk

+ qa

N+2∑
l=0

N+2∑
m=0

[
P

(2)
i,l

]⊺(∫ th

0
Bl,p−2(t)Bm,p−2(t)

)[
P

(2)
i,m

]
+

Na∑
j=1

η ∥ Φi,j ∥2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Synchronous Algorithm for collision avoidance :
The proposed approach is based on synchronous distributed MPC, where the agents share their previously predicted state sequence with their neighbours
before simultaneously solving the next optimization problem.
At discrete time step kt, each agent simultaneously computes new input sequence over the horizon following these steps:

1 Check for future collision using the latest predicted states of neighbours(at time step kt − 1)

2 Build the optimization problem where the constraints for collision avoidance are introduced only if collision is detected.

3 After obtaining the next optimal sequence, the first element is applied to the model and the agents move one step ahead. All the states predicted will
be shared among the agents.

Simulation specifications

Table 1. Tuning parameters

Sampling time h(s) 0.2
Degree of B-spline p 3
Control points N 5
No. of agents Na 10

Prediction horizon Np 5
Safety distance rmin 0.2

Qp diag(100, 100, 100)
R diag(50, 50, 200)
η 100

Transition time (s) 9.0
Computation time (s) 6.4581

Average QP solving time (s) 0.014039

Figure 2. Crazyflie drones at Esisarium

Simulation results

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

Conclusion and future work

Exploit the B-spline parameterization for solving the
trajectory generation problem.

Consider collision avoidance constraints online.

Future work will focus on adding safety guarantees of the
collision avoidance constraints and testing the algorithms
in experiments.

References

