Optimal policies and restless bandits for making costly observations

Christopher R. Dance, NAVER LABS Europe

Workshop on Restless Bandits, Grenoble, November, 2023

Outline

problems results

observing a single time series — optimality of threshold policies — why?

controlling a single time series — optimality of threshold policies

restless bandit for multiple time series ← existence of Whittle index

Based on: Dance and Silander, Optimal Policies for Observing Time Series and Related Restless Bandit Problems, *Journal of Machine Learning Research*, Vol. 20, No. 35, pp. 1-93, April 2019.

Problem 1: observing a single time series

Discrete-time scalar normally distributed time series $X_0, X_1, ...$

 $X_{t+1} = r X_t + N(0,1)$

Measurement action $a_t \in \{0,1\}$ results in measurement $Y_t \sim N\left(X_t, \frac{1}{\theta_{a_t}}\right)$

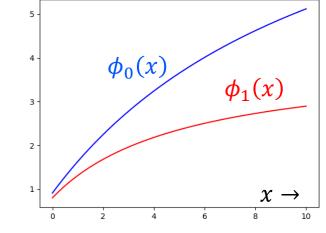
Posterior variance $x_t \coloneqq var(X_t | a_0, Y_0, ..., a_{t-1}, Y_{t-1})$ has Kalman filter update:

$$x_{t+1} = \frac{r^2 x_t + 1}{\theta_{a_t}(r^2 x_t + 1) + 1} =: \phi_{a_t}(x_t)$$

Uninformative observation $\theta_a = 0 \Rightarrow \phi_a(x) = r^2 x + 1$

Assume action a = 0 is less precise ($\theta_0 < \theta_1$) but action $a = 1 \operatorname{costs} \lambda > 0$.

Problem. When should we make costly-but-precise measurements of the time series to achieve a good trade-off between our uncertainty about the time series and the cost of precise observations?



Problem 1: observing a single time series

Infinite horizon discounted Markov decision problem

state $x_t \in \mathbb{R}_{\geq 0}$ is the posterior variance

action $a_t = 0$ for a poor observation, $a_t = 1$ for a good observation

 $cost x_t + \lambda a_t$

transition $x_{t+1} = \frac{r^2 x_t + 1}{\theta_{a_t}(r^2 x_t + 1) + 1} =: \phi_{a_t}(x_t)$ is Kalman filter variance update

discount $\beta \in (0,1)$

Dynamic programming equation for value function $V: \mathbb{R}_{\geq 0} \to \mathbb{R}$

$$V(x) = \min_{a \in \{0,1\}} \left\{ x + \lambda \, a + \beta \, V(\phi_a(x)) \right\}$$

Problem 2: controlling a single time series (Meier et al., 1967)

Discrete-time scalar linear quadratic Gaussian (LQG) control problem with costly measurements

 $X_{t+1} = r X_t + N(0,1) + U_t$

Problem. Select control $U_t \in \mathbb{R}$ and measurement action $a_t \in \{0,1\}$ to minimize discounted sum of

 \mathbb{E} (quadratic penalty on X_t) + \mathbb{E} (quadratic penalty on U_t) + \mathbb{E} (pay λ each time we take action $a_t = 1$)

Fact. Problem separates into two independent parts:

- determining U_t given posterior mean for X_t
- determining measurement actions a_t

Dynamic programming equation for value function $V: \mathbb{R}_{\geq 0} \to \mathbb{R}$

$$V(x) = \min_{a \in \{0,1\}} \{ \alpha \ x + \lambda \ a + \beta \ V(\phi_a(x)) \} \text{ for some constant } \alpha > 0$$

Problem 3: observing or controlling multiple time series (Villar, 2012)

Restless bandit problem for *n* scalar time series \leftrightarrow parking occupancy statistics of *n* street segments

stateposterior variances for each of the n street segmentsactionselect m < n street segments to observe with m camerastransitionsKalman filter variance update for each streetcostsum of the n posterior variances

Problem. Does each project of this restless bandit have a well-defined Whittle index?

Main results: optimality of threshold policies (Dance and Silander, 2019)

Problem
$$P_{\lambda}$$
 $V(x) = \min_{a \in \{0,1\}} \{ x + \lambda \, a + \beta \, V(\phi_a(x)) \}$ where $\phi_a(x) = \frac{r^2 x + 1}{\theta_a(r^2 x + 1) + 1}$

Thm. Let multiplier $r \in [0,1]$, precisions $0 \le \theta_0 < \theta_1$ and discount $\beta \in (0,1)$.

Then for some threshold $s \in [-\infty, \infty]$ an optimal policy for problem P_{λ} is to take action a = 1 if $x \ge s$ action a = 0 if $x \le s$.

Remark. This theorem also holds for a wide range of cost functions $C: \mathbb{R}_{\geq 0} \to \mathbb{R}$

$$V(x) = \min_{a \in \{0,1\}} \left\{ C(x) + \lambda \, a + \beta \, V(\phi_a(x)) \right\}$$

including $C(x) = x^p$ for all p > 0 and $C(x) = -x^p$ for $p \in [-1, 0)$.

Cor. Let $r \in [0,1]$, $0 \le \theta_0 < \theta_1$ and $\beta \in (0,1)$. Then a threshold policy is also optimal for making observations in the LQG problem with costly measurements.

Main results: Whittle index

Problem P_{λ} $V(x; \lambda) = \min_{a \in \{0,1\}} \{x + \lambda a + \beta V(\phi_a(x); \lambda)\}$

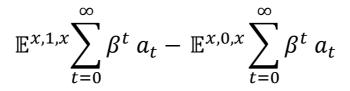
Def. The Whittle index of state x in problem P_{λ} is a real number $\lambda^*(x)$ such that • action a = 1 is optimal in state x if and only if $\lambda \le \lambda^*(x)$ • action a = 0 is optimal in state x if and only if $\lambda \ge \lambda^*(x)$

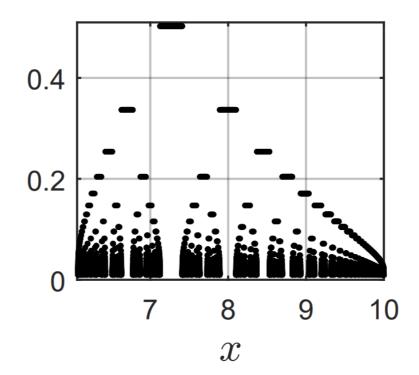
Notation. Let $\mathbb{E}^{x,a,s}$ denote the expectation for: start in x, take action a, follow s-threshold policy $a_t = 1_{x_t>s}$

Thm. Let multiplier $r \in [0,1]$, precisions $0 \le \theta_0 < \theta_1$ and discount $\beta \in (0,1)$. Then the Whittle index for the family of problems P_{λ} exists and equals

$$\mathcal{A}^*(x) = \frac{\sum_{t=0}^{\infty} \beta^t (\mathbb{E}^{x,0,x} x_t - \mathbb{E}^{x,1,x} x_t)}{\sum_{t=0}^{\infty} \beta^t (\mathbb{E}^{x,1,x} a_t - \mathbb{E}^{x,0,x} a_t)}.$$

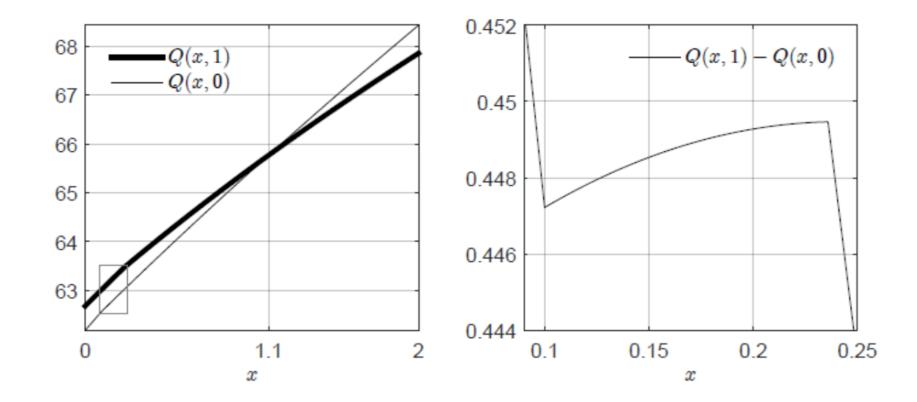
Plot of the denominator of the index



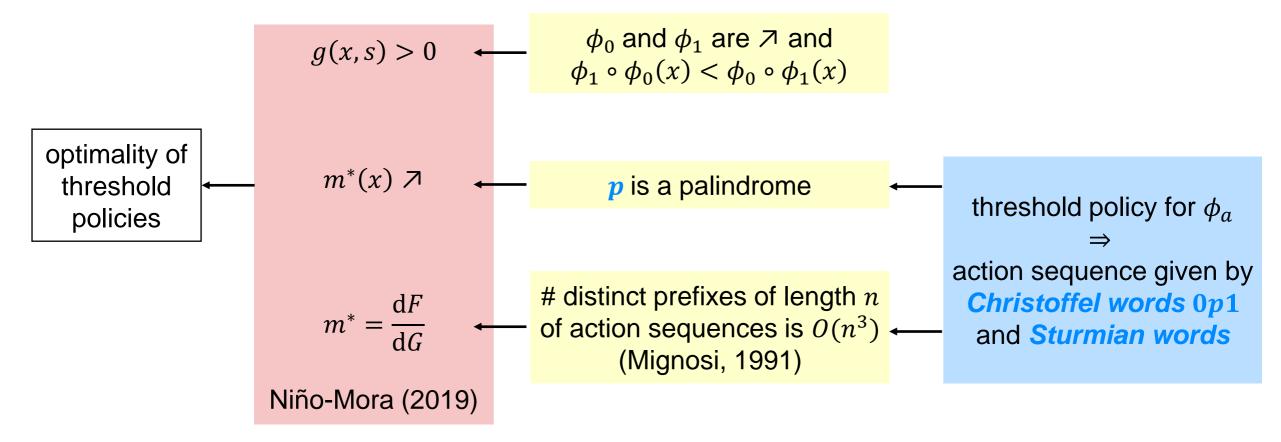


Why are threshold policies optimal?

Is Q(x, 1) - Q(x, 0) monotone? (Serfozo, 1976)



Outline of proof



Outline of proof

g(x,s)	g(x,s) > 0	
~	$g(\lambda, 3) > 0$	
т m*(x)	$m^*(x) \nearrow$	optimality of threshold policies
	$m^* = \frac{\mathrm{d}F}{\mathrm{d}G}$	
F(x	ac Niño-Mora (2019)	
C		

$$g(x,s) \coloneqq \sum_{t=0}^{\infty} \beta^{t} (\mathbb{E}^{x,1,s} a_{t} - \mathbb{E}^{x,0,s} a_{t})$$

marginal productivity index
$$m^{*}(x) \coloneqq \frac{\sum_{t=0}^{\infty} \beta^{t} (\mathbb{E}^{x,0,x} x_{t} - \mathbb{E}^{x,1,x} x_{t})}{\sum_{t=0}^{\infty} \beta^{t} (\mathbb{E}^{x,1,x} a_{t} - \mathbb{E}^{x,0,x} a_{t})}$$

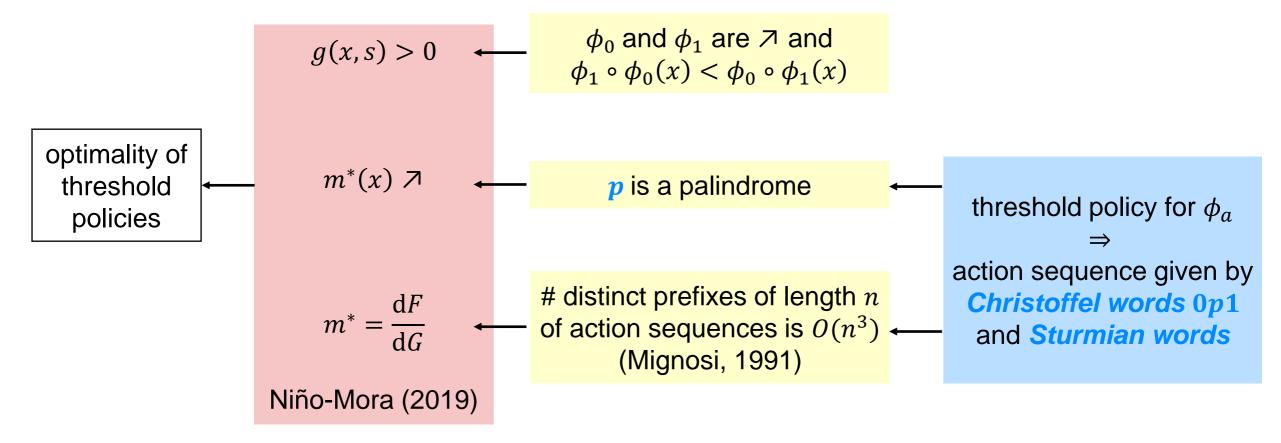
marginal resource

reward metric

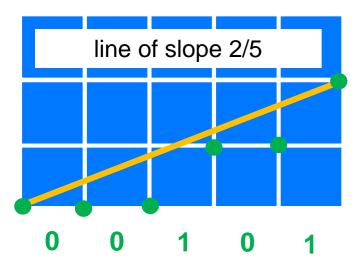
$$F(x,s) \coloneqq \sum_{t=0}^{\infty} \beta^{t} \mathbb{E}^{x,1_{x>s},s} (-x_{t})$$

resource metric $G(x,s) \coloneqq \sum_{t=0}^{\infty} \beta^t \mathbb{E}^{x,1_{x>s},s} a_t$

Outline of proof



Action sequences resulting from threshold policies

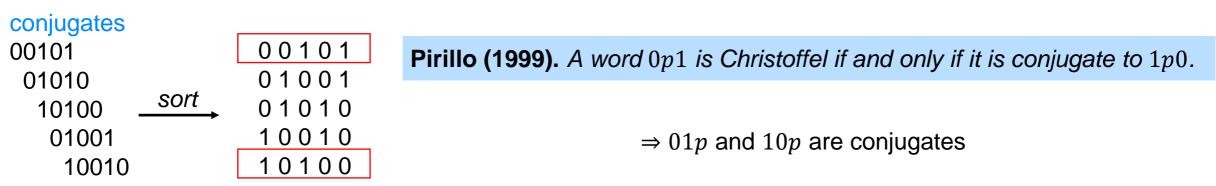


Def. The Christoffel word of slope a, which is a rational number in [0,1], is $w_n = \lfloor (n + 1) a \rfloor - \lfloor n a \rfloor$ for n = 0, 1, ..., denom(a) - 1

Ex. of Christoffel words: 0, 1, 01, 001, 011, 00101, ...

 $00101 \rightarrow 010$ is a palindrome

Prop. If 0p1 is a Christoffel word then p is a palindrome.



Volume 27

CRM

SERIES

on Words

Jean Berstel Aaron Lauve

MONOGRAPH

Centre de Recherches Mathématiques Montréal

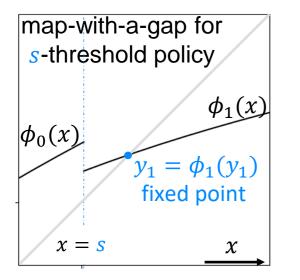
Combinatorics

Christophe Reutenauer Franco V. Saliola

American Mathematical Society

COMBINATORICS

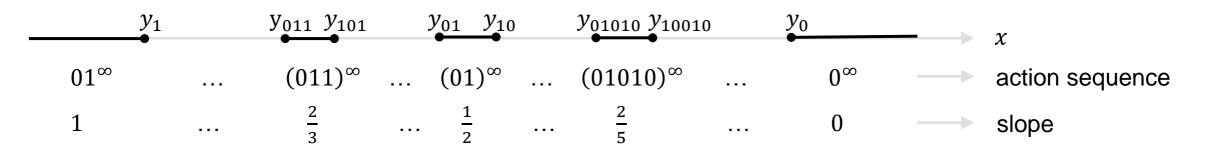
Action sequences resulting from threshold policies



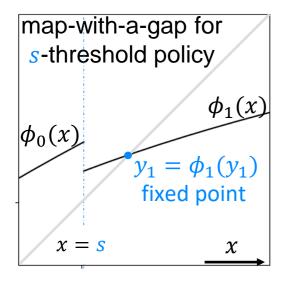
Assp A. For some real interval \mathcal{I} , maps $\phi_0: \mathcal{I} \to \mathcal{I}$ and $\phi_1: \mathcal{I} \to \mathcal{I}$ are • increasing • contractive (i.e., $|\phi_a(x) - \phi_a(y)| < |x - y|, x, y \in \mathcal{I}, x \neq y$) • have fixed points $y_1 < y_0$ in \mathcal{I} .

Def. For word $w = w_1 \dots w_n$, define the composition $\phi_w \coloneqq \phi_{w_n} \circ \dots \circ \phi_{w_1}$ and its fixed point $y_w = \phi_w(y_w)$.

Thm. Let Assp. A hold. Let the initial state be x. Then the action sequence under the x-threshold policy is 01^{∞} if and only if $x \le y_1$ $(01p)^{\infty}$ if and only if $y_{01p} \le x \le y_{10p}$ for any Christoffel word 0p1 0^{∞} if and only if $x \ge y_0$.



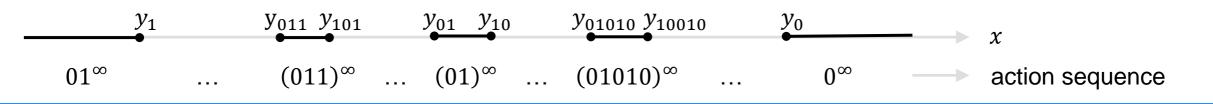
Action sequences resulting from threshold policies



Assp A. For some real interval \mathcal{J} , maps $\phi_0: \mathcal{J} \to \mathcal{J}$ and $\phi_1: \mathcal{J} \to \mathcal{J}$ are • increasing • contractive (i.e., $|\phi_a(x) - \phi_a(y)| < |x - y|, x, y \in \mathcal{J}, x \neq y$) • have fixed points $y_1 < y_0$ in \mathcal{J} .

Def. For word $w = w_1 \dots w_n$, define the composition $\phi_w \coloneqq \phi_{w_n} \circ \dots \circ \phi_{w_1}$ and its fixed point $y_w = \phi_w(y_w)$.

Thm. Let Assp. A hold. Let the initial state be x. Then the action sequence under the x-threshold policy is 01^{∞} if and only if $x \le y_1$ $(01p)^{\infty}$ if and only if $y_{01p} \le x \le y_{10p}$ for any Christoffel word 0p1 0^{∞} if and only if $x \ge y_0$.



Rmk. This result was previously only partially known.

- Rajpathak et al. (2012) only for linear maps.
- Kozyakin (2003) for nonlinear maps but unclear dependence on x.

Thank you!

Dance and Silander