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- Transfer learning

NAVER LABS
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- Transfer learning

NAVER LABS

Transfer learning

a model developed for a task is

Model

reused as the starting point for
a model on a second task
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- Transfer learning

NAVER LABS

Can we learn transferable
representations without

Model

requiring annotations?

only images
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- Transfer learning
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Self-Supervised Learning
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Learn model parameters

on an unlabeled dataset

only images
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- Self-supervised learning (SSL) NAVER LABS

Has deeply impacted the field of Al:

e Enables utilizing unlabeled data
e Revolutionized NLP (BERT/GPT-3 etc)

e Core component of CV state-of-the-art [Yann LeCun’s cake]

[Yann LeCun's cake] Yann LeCun’s talks (NeurlPS 2016 and many after)
[Pieter Abbeel's cake] Pieter Abbeel. NeurlPS 2017
[Albanie et al.’s cake] Albanie, Thewlis, Henriques. SIGBOVIK 2018
© NAVER LABS Corp.



- Self-supervised learning (SSL) NAVER LABS

e |earn aself-supervised proxy task
o Atask defined on the input data alone
o Learn “aspects” of the input
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- Self-supervised learning (SSL) NAVER LABS

e |earn aself-supervised proxy task
o Atask defined on the input data alone
o Learn “aspects” of the input

e No annotations required!
o Scalability: use “any” image/video

o Flexibility: find the data that fits
your downstream task

© NAVER LABS Corp.



- Self-supervised learning (SSL) NAVER LABS

Doe¢ thic mean that I

don't need to care
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- Self-supervised learning (SSL) NAVER LABS

Doe¢ thic mean that I
don't need to care

abouvt what data Iure\
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- Self-supervised learning (SSL) NAVER LABS

Doe¢ thic mean that I

don't need to care
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https://twitter.com/Chicken3gg/status/1274314622447820801

Self-supervised proxy task

NAVER LABS

Predictive/Generative

e Formulated as synthesis or

classification
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Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by context prediction. ICCV. 2015.
Noroozi, Mehdi, and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles ECCV 2016.

Zhang, R, Isola, P, & Efros, A. A. Colorful image colorization. ECCV 2016.
Gidaris, S., Singh, P., & Komodakis, N. (2018). Unsupervised representation learning by predicting image rotations. ICLR 2018

© NAVER LABS Corp.



- Self-supervised proxy task

NAVER LABS

Predictive/Generative

e Formulated as synthesis or

classification

-
M
ol

CNN backbone

lowdim  L2norm

1
D

Contrastive

128D Unit Sphere

e |earninginvariance toa
“pretext” task

:> ih"(‘ N maximize

Two different

augmentations a f similarity

e.g. [SImCLR]

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." arXiv 2018.
[InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.

[SIimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020]

© NAVER LABS Corp.



- A very successful proxy task for visual representations  NAVERLABS

Learning invariance to image transformations
(data augmentation)

—

Two different

augmentatlons ﬂ ﬁ

State-of-the-art for learning generalizable visual representations

maximize
similarity

[Too-many-to-fit references - see Appendix] © NAVER LABS Corp.



- Beyond pixel inputs NAVER LABS

A more generic task
(independent of the specific nature of the input space):

Learn a low-dimensional space that preserves
properties (e.qg. topology) of the input space

(a.k.a. Dimensionality reduction
or manifold learning)

© NAVER LABS Corp.



Y Overview of this talk NAVER LABS

Part 1 Part 2 Part 3
/I—low can we improve the\ /Con we use recent visual \ /I—low can we measure \
transfer learning SSL frameworks for concept generalization in
performance of dimensionality a more principled way?
contrastive SSL? reduction?

[MoCHi]
\Jﬁeunps2020

[TLDR]
\Arxiv 2021

[lmageNet-Co(]
\ICCV 2021 ] /

[MoCHi] Kalantidis et al. "Hard negative mixing for contrastive learning." NeurlPS 2020.
[TLDR] Kalantidis et al. "TLDR: Twin Learning for dimensionality reduction" arXiv 2021.
[ImageNet-CoG] Sariyildiz, Kalantidis et al. "Concept Generalization in Visual Representation Learning” ICCV 2021.

icons from Flaticon.com © NAVER LABS Corp.



NAVER LABS Work with amazing co-authors! NAVER LABS

Diane Larlus

Mert Bulent
Sariyildiz

Philippe Karteek
Weinzaepfel Alahari
(Inria)

Carlos Jon Noe Pion
Lassance Almazan

© NAVER LABS Corp.



Part 1.
Improving contrastive
self-supervised learning

NAVER LABS



- Contrastive self-supervised learning NAVER LABS

Define positive pairs and negative in a self-supervised way

Proxy task:
Learning invariance to image transformations (data augmentation)

© NAVER LABS Corp.



- Contrastive self-supervised learning NAVER LABS

Positive pair: Two transformed versions of the same image

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure from [Exemplar-CNN] Figure from [SIimCLR]

[Exemplar-CNN] Dosovitskiy, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks." TPAMI 2015]
[SIimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020]

© NAVER LABS Corp.



- Contrastive self-supervised learning NAVER LABS
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- Contrastive self-supervised learning NAVER LABS

_:ig G

Image Transformations

—
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- Contrastive self-supervised learning NAVER LABS
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- Contrastive self-supervised learning NAVER LABS
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- Contrastive self-supervised learning NAVER LABS
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- Contrastive self-supervised learning NAVER LABS
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The InfoNCE loss NAVER LABS

exp(q”k/7)
exp(qTk/T) + pI— exp(qTn/7)’

Lqx,q = —log

[CPC] Oord, Aaron van den, et al. "Representation learning with contrastive predictive coding." arXiv 2018.
[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.

[SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020. © NAVER LABS Corp.



- Where do negatives come from? NAVER LABS

Negatives: Any other image [Exemplar-CNN, InstDiscr]

[SIMCLR]: images from the same batch

[MoCo]. queue with images from last batches

[SImMCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.
[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020)

[Exemplar-CNN] Dosovitskiy, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks." TPAMI 2015
[InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018. © NAVER LABS Corp.



- A more challenging proxy task NAVER LABS

Key observation:

Making the proxy task more challenging
leads to representations that generalize better

[MoCo-v2, SImCLR, InfoMin Aug]

[SIMCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.
[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020)
[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurlPS 2020.

© NAVER LABS Corp.



- A more challenging proxy task

Key observation:

How?

[SimCLR]

[SIMCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

NAVER LABS

Making the proxy task more challenging
leads to representations that generalize better

[MoCo-v2, SImCLR, InfoMin Aug]

e More challenging positive pairs

PyTorch-style data augmentation

(scale=(0.2, 1.0))
alFlip ()

lorJitter((0.8,0.8,0.8,0. 4) )
R doml\pplw[c:l P 0. 8»

blur = Blu (s gm\ (0 1, ? OH

Ra doml\pply([bl £l p=
nd_atgmant (3
RandomGrayscale (p=0.2) ,

[InfoMin Aug.]

[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020)

[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurlPS 2020.

© NAVER LABS Corp.



- A more challenging proxy task NAVER LABS

Key observation:

Making the proxy task more challenging
leads to representations that generalize better

[MoCo-v2, SImCLR, InfoMin Aug]

How?
e More challenging positive pairs

e More challenging negatives

[SIMCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.
[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020)
[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurlPS 2020.

© NAVER LABS Corp.



- How to get more challenging negatives? NAVER LABS
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[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.
[SIMCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

© NAVER LABS Corp.



- How to get more challenging negatives? NAVER LABS
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[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.
© NAVER LABS Corp.



- How to get more challenging negatives? NAVER LABS

-
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[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.

© NAVER LABS Corp.



- Contrastive self-supervised learning

Model

Model

Model

—>

come ‘hard” negatives

do exict

NAVER LABS
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- Contrastive self-supervised learning NAVER LABS

-

b
'f — Model
Sl S

come ‘hard” negatives

do exict ...and hove
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x102
1.0k == Epoch 1
%® - == Epoch 25
Model 0.8 N == Epoch 50
® T N == Epoch 100
X == Epoch 150
> §0'6 L ‘\:\\ == Epoch 200
/ ®
5z ®
o
Model ® 0.07g0 10! 107 10°
P Largest Negative Logits (ranked)
highest negative logits for
[MoCo-v2] across epochs

[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv (2020)
© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

Model

Model

Model

—>

Simple idea:

What if we mix the hardest
negatives for each query
and synthesize new hard
negatives?

© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

Model
°ee MoCHi: mix the hardest
negatives for each query
and synthesize a small set
of new (hard) negatives
Model
> Directly in feature space
N > On-the-fly for each query
Model

: synthetic
hard negatives

© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

Model

Model

Model

—> 1 %

For each query q:

1) Randomly sample from
closest negatives

© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

For each query q:
Model +—» d queryq
\ % RE. 1) Randomlysample from
“ " closest negatives
/‘ 2) synthesize a new
Model —» k ® % negative by mixing ...
® %
x %
; ®
N two existing negatives:
2. 2% p
Model — 1 X ox hy, = axn; + (1 — ag)n;
: synthetic

hard negatives
© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

For each query q:
Model +—» d query q
x R 1) Randomly sample from
" closest negatives
%® 2) synthesize a new
Model —» k ® % negative by mixing ...
® %
% ®
/ §/ | :
= the query with a negative:
% x W
: synthetic

hard negatives
© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

Model +—» 4 \ For each query q:
%

Model

1) Randomly sample from
closest negatives

2) synthesize a new
negative by mixing

3) Repeat!

Model

@ synthetic
hard negatives

© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

o &5 ‘
..or MoCHI
e We implement MoCHi on top of [MoCo-v2]

For every query q:
# MoCo: calculate logits to the key and all negatives from the memory queue

For s synthetic hard negatives:
1: randomly sample 2 of the closest N negatives and a mixing coefficient
2: “mix” and apply L2-normalization
3: calculate logit (cosine similarity to q) append to the set of negative logits

e Small computational overhead
s is orders of magnitude smaller than the memory queue size

[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv (2020)

© NAVER LABS Corp.



- Experimental evaluation

Self-Supervised learning
(Learn augmentation invariance)

Images only (discard labels)

NAVER LABS

Transfer Learning to
Downstream tasks

Image Classification (frozen)
ImageNet-1k or other datasets

Model

Object Detection (fine-tune)
PASCAL VOC, MS COCO

Instance Segmentation (fine-tune)
MS COCO

© NAVER LABS Corp.



- Results on ImageNet-1k and PASCAL VOC

Linear Classification performance:
(train on ImageNet-1K without labels,
than learn linear classifiers on the
same set)

> MoCHi retains the strong
performance of MoCo-v2
but shows no gains

NAVER LABS
IN-1k VOC 2007
Mediod Topl | APs AP APy
100 ¢époch training
MoCo-v2 [10]* 63.6 80.8 (+0.2) 53.7 (£0.2) 59.1 (£0.3)
+ MoCHi (256, 512, 0) 63.9 81.1(£0.1) (0.4) 54.3(40.3)(0.7) 60.2 (£0.1) (1.2)
+ MoCHi (256, 512, 256) 63.7 81.3 (£0.1) (0.6) 54.6 (£0.3) (1.0) 60.7 (£0.8) (1.7)
+ MoCHi (128, 1024, 512) 63.4 81.1(40.1) (0.4) 54.7 (£0.3) (1.1) 60.9 (+0.1) (1.9)
200 {poch training
MoCo-v2 [10] 67.7 824 57.0 63.6
InfoMin Aug. [39] 70.1 82.7 57.6 64.6
MoCo-v2 [10]* 67.9 | 82.5(+0.2) 56.8 (£0.1) 63.3 (£0.4)
+ MoCHi (1024, 512, 256) 68.0 82.3(+0.2) (0.2) 56.7 (£0.2) (0.1) 63.8 (£0.2) (0.5)
+ MoCHi (512, 1024, 512) 67.6 82.7 (£0.1) (0.2)  57.1(£0.1)(0.3) 64.1(20.3) (0.8)
+ MoCHi (256, 512, 0) 67.7 82.8 (+0.2) (0.3) 57.3(£0.2) (0.5) 64.1 (+0.1) (0.8)
800 époch training
SvAV [7] 75.3 82.6 56.1 62.7
MoCo-v2 [10] 71.1 82.5 57.4 64.0
MoCo-v2[10]* 69.0 82.7 (x0.1) 56.8 (+0.2) 63.9 (0.7
+ MoCHi (128, 1024, 512) 68.7 83.3 (+0.1) (0.6) 57.3 +0.2 (0.5)  64.2 (+0.4) (0.3)
Supervised [21] 76.1 81.3 53.5 58.8

© NAVER LABS Corp.



- Results on ImageNet-1k and PASCAL VOC

Transfer learning performance
(Train on ImageNet-1K,
fine-tune on PASCAL VOC

for Object detection)

MoCHi helps the model learn faster:

>  Strong performance after only 100
epochs of pre-training

>  MoCHi after 200 epochs performs
similar to MoCo-v2 after 800 epochs

> Gains persist after longer training
(8OO epochs)

NAVER LABS
IN-1k VOC 2007
Mediod Topl | APs AP APy
100 epoch training
MoCo-v2 [10]* 63.6 80.8 (+0.2) 53.7 (£0.2) 59.1 (£0.3)
+ MoCHi (256, 512, 0) 63.9 81.1(£0.1) (0.4) 54.3(40.3)(0.7) 60.2 (£0.1) (1.2)
+ MoCHi (256, 512, 256) 63.7 81.3 (£0.1) (0.6) 54.6 (£0.3) (1.0) 60.7 (£0.8) (1.7)
+ MoCHi (128, 1024, 512) 63.4 81.1(40.1) (0.4) 54.7 (£0.3) (1.1) 60.9 (+0.1) (1.9)
200 epoch training
MoCo-v2 [10] 67.7 824 57.0 63.6
InfoMin Aug. [39] 70.1 82.7 57.6 64.6
MoCo-v2 [10]* 67.9 | 82.5(+0.2) 56.8 (£0.1) 63.3 (£0.4)
+ MoCHi (1024, 512, 256) 68.0 82.3(+0.2) (0.2) 56.7 (£0.2) (0.1) 63.8 (£0.2) (0.5)
+ MoCHi (512, 1024, 512) 67.6 82.7 (£0.1) (0.2)  57.1(£0.1)(0.3) 64.1(20.3) (0.8)
+ MoCHi (256, 512, 0) 67.7 82.8 (+0.2) (0.3) 57.3(£0.2) (0.5) 64.1 (+0.1) (0.8)
800 epoch training
SvAV [7] 75.3 82.6 56.1 62.7
MoCo-v2 [10] 71.1 82.5 57.4 64.0
MoCo-v2[10]* 69.0 82.7 (x0.1) 56.8 (+0.2) 63.9 (0.7
+ MoCHi (128, 1024, 512) 68.7 83.3 (+0.1) (0.6) 57.3 +0.2 (0.5)  64.2 (+0.4) (0.3)
Supervised [21] | 76.1 | 813 53.5 58.8

© NAVER LABS Corp.



- Further analysis in our paper NAVER LABS

e Gains also consistent on COCO (object detection, semantic segmentation)
e Analysis using a class label “oracle” (the ImageNet-1K labels)

e MoCHi results to better “utilization” of the embedding space [Wang & Isola]

Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., Larlus, D.
Hard negative mixing for contrastive learning
NeurlPS 2020

[Wang & Isola] Wang, Tongzhou, and Phillip Isola. "Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere." ICML 2020. © NAVER LABS G
orp.



- Take home message NAVER LABS

e Synthesize hard negatives for a more challenging proxy task

e Faster self-supervised learning

e Performance gains for after fine-tuning over the baseline

https://europe.naverlabs.com/mochi

Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., Larlus, D.
Hard negative mixing for contrastive learning
NeurlPS 2020

© NAVER LABS Corp.



Part 2:
Twin learning
for dimensionality reduction

NAVER LABS



- Self-supervised learning beyond pixel inputs NAVER LABS

Representation learning —» Dimensionality reduction

Assumption:
we have a (meaningful) input vector space we want to compress

Task:
Learn a low-dimensional space that preserves properties
(e.g. topology) of a high-dimensional input space

© NAVER LABS Corp.



- Dimensionality reduction NAVER LABS

Why is this important?

e Hard or impossible to hand-craft priors
e Cannot afford to or don't want to fine-tune “end-to-end”

e Dimensionality reduction is still used in practice in many fields

© NAVER LABS Corp.



- Dimensionality reduction NAVER LABS

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION

\‘ a//menciona//‘ty reduction function

© NAVER LABS Corp.



- Dimensionality reduction for visualization NAVER LABS

Visualization (output dimension of d =2 or d = 3):
Many good methods specialize [t-SNE], [UMAP], [MDE]

UMAP " MDE

[t-SNE] Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." JIMLR 2008.
[UMAP] Mclnnes, et al. "UMAP: Uniform manifold approximation and projection for dimension reduction." arxiv 2018.
[MDE] A. Agrawal, A. Ali, and S. Boyd. Minimum-distortion embedding. arXiv preprint arXiv:2103.02559, 2021. © NAVER LABS Corp.



- Dimensionality reduction for visualization NAVER LABS

Visualization (output dimension of d =2 or d = 3):
Many good methods specialize [t-SNE], [UMAP], [MDE]

&

‘" Z 9

4

B

60 40 @ & 0 15

" SNE UMAP S MDE

don't scale well w.r.t. output dimension / made for visualization

[t-SNE] Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." JIMLR 2008.
[UMAP] Mclnnes, et al. "UMAP: Uniform manifold approximation and projection for dimension reduction." arxiv 2018.
[MDE] A. Agrawal, A. Ali, and S. Boyd. Minimum-distortion embedding. arXiv preprint arXiv:2103.02559, 2021. © NAVER LABS Corp.



- Dimensionality reduction NAVER LABS

For higher output dimensions (d > 3):

Manifold learning methods

Figure from [ISOMAP]

[ISOMAP] Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science. 2000
[scikit-learn] has implementations and a nice overview of common manifold learning methods

© NAVER LABS Corp.


https://scikit-learn.org/stable/modules/manifold.html

- Dimensionality reduction NAVER LABS

For higher output dimensions (d > 3):

Manifold learning methods

Figure from [ISOMAP]

don’t scale well w.r.t. dataset size

[ISOMAP] Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science. 2000
[scikit-learn] has implementations and a nice overview of common manifold learning methods

© NAVER LABS Corp.


https://scikit-learn.org/stable/modules/manifold.html

- Dimensionality reduction NAVER LABS

How about large-scale datasets?

Linear dimensionality reduction: !
Principal component analysis [PCA]

e |sused in practice for large-scale systems

e s actively used outside core-Al

biology (drug production, pollution detection, etc.),
remote sensing,

assisted medical diagnhosis,

medical imaging analysis, etc.

|
N N} =) ) -

6!
-8 -6 -4 -2 0 2 4 6 8 10

Figure from Wikipedia

O O O O

[PCA] K. Pearson. “On lines and planes of closest fit to systems of points in space.”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901.

© NAVER LABS Corp.


https://en.wikipedia.org/wiki/Principal_component_analysis

- Why don’'t manifold learning methods scale? NAVER LABS

Manifold Learning with 1000 points, 10 neighbors

LLE (0.12 sec) LTSA (0.21 sec) LLE (0.32 sec) Modified LLE (0.26 sec)

Manifold learning methods are not scalable
=
(especially wrt dataset size): A

> 4

¢

Isomap (0.72 sec) MDS (2.2 sec) SE (0.12 sec) -SNE (11 sec)
% :
3

Figure from [scikit-learn]

- require propagation on k-NN graphs (many)

- use complex optimization solvers (many)

o Sb

- 1

- eigen-decompositions (many)

[scikit-learn] has implementations and a nice overview of common manifold learning methods o NAVER LABS
orp.



https://scikit-learn.org/stable/modules/manifold.html

- Why don’'t manifold learning methods scale? NAVER LABS

Manifold learning methods are not scalable

(especially wrt dataset size):

require propagation on k-NN graphs (many)
use complex optimization solvers (many)

eigen-decompositions (many)

Not a issue for recent
self-supervised visual
representation learning
frameworks

(SGD solvers,
simple contrastive losses)

© NAVER LABS Corp.



- Why don’'t manifold learning methods scale? NAVER LABS

Manifold learning methods are not scalable

(especially wrt dataset size):

Not a issue for recent

- require propagation on k-NN graphs (many) self-supervised visual
- use complex optimization solvers (many) representation learning
frameworks

- eigen-decompositions (many)
(SGD solvers,

simple contrastive losses)

Can we borrow from them to design
dimensionality reduction approaches?

© NAVER LABS Corp.



- A suitable loss for dimensionality reduction NAVER LABS

The [Barlow Twins] loss:

Distorted Represen-

; Net :
. images tations
e Simple and scalable Empirical Target

YB ZA Ccross-corr. Cross-corr.
e No contrasting pairs, only positives Images N, € 4

. . Te~T backprop . ﬁ EBT
e A loss function that fits well: X KA ' -
o Decorrelation-focused yA E'_, ZB/' feature
dimension
o Trivially avoids collapsing s

backprop.

(despite only using positive pairs)
Figure from [Barlow Twins]

[Barlow Twins] Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction” ICML 2021. o NAVER LABS
orp.



- The Barlow Twins loss NAVER LABS

Represen- Zb 284@ 25
tations S— Cz‘j —
mpirica 5 2B )2
Al cross-corr. \/ Zb zb z) \/Zb
—»7 C

Ll .

. |
t . Empirical (batch) cross-corr. matrix
— ZB/ feature - across the feature dimension
Shmnision - outer product of the normalized
representation for every positive pair
- averaged over the batch

[Barlow Twins] Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction” ICML 2021. O NAVER LABS G
orp.



- The Barlow Twins loss NAVER LABS

sA 4B
Db 2h,i%,
Gy =
Empirical Target \/Zb zb : \/Zb
Cross-cofrr. Cross-corr.

C' 2

I. ! ﬁ‘cﬂ; LBT:Z(I_ zz ‘|‘/\ZZC

& 8 T 1#£]
feature I\ J I\ J
dimension Y Y
push diagonal push off-diagonal
elements fo 1 elements fo 0

[Barlow Twins] Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction” ICML 2021. O NAVER LABS G
orp.



- The Barlow Twins loss NAVER LABS

sA 4B
Db 2h,i%,
Gy =
Empirical Target \/Zb zb : \/Zb
Cross-cofrr. Cross-corr.

C' 2

I. ! ﬁ‘cﬂ; LBT:Z(I_ zz ‘|‘/\ZZC

L X i 1F#E]
feature Y
dimension maximize the dot product

of every positive pair

[Barlow Twins] Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction” ICML 2021. O NAVER LABS G
orp.



- The Barlow Twins loss NAVER LABS

~>A 2B
Db 2h,i%,
Cij =
Empirical Target \/Zb zbz \/Zb 3B )2
Cross-coirr. Cross-cofrr.

C' 2

-.7, q‘—’cBT EBT:Z(]-_ zz +/\ZZC

—— I,
feature Y
dimension de-correlate

output dimencions

[Barlow Twins] Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction” ICML 2021. O NAVER LABS G
orp.



- Towards scalable dimensionality reduction NAVER LABS

(Our only) Assumption:
We have a “meaningful” input space that we want to compress

Pre-text task for generic input spaces:
(used to define positive pairs)

e Add noise (e.g.denoising autoencoders [DAE])

e Neighborhood Embedding: nearest neighbors [DrLim, t-SNE ++]

Figure from [Isomap]

[DAE] P Vincent et al. "Extracting and composing robust features with denoising autoencoders." ICML 2008.

[Isomap] Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science. 2000
[t-SNE] Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." IMLR 2008.

[DrLim] Hadsell, et al. “Dimensionality reduction by learning an invariant mapping.” CVPR 2006. © NAVER LABS Corp.



- Towards scalable dimensionality reduction NAVER LABS

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION

© NAVER LABS Corp.



- Towards scalable dimensionality reduction NAVER LABS

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION
B8 ; y
[~ ] : B l|
T-\o > | ENCODER ) = idﬂ] .
| |
] | .
% 8 (.
/ \ [ 1 l { B8 |
ollll » | ENCODER 7 = ! 4 m :
wul .' |

a ,bar/‘ﬁve pair

via nearest neighbors

© NAVER LABS Corp.



- Twin Learning for Dimensionality Reduction NAVER LABS

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION B
B ! {
= ; B | d
T.\ ollll > | ENCODER ) » :dl__ﬂ ' > | PROJECTOR |7 = d d
| |
| !
Sl | ' L L
Z 5 ‘9 ', ; ” ¢ 5 d S d
/ \ m } 1B
| |
D] = | EheoRER, I > 4 lm (> LPROFECTOR Y 5 11|~ cross corr IDENTITY
1] ! } MATRIX MATRIX
-

N J
hd

the Barlow Twings (s¢s

© NAVER LABS Corp.



- Twin Learning for Dimensionality Reduction NAVER LABS

..or TLDR

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION B
B ! {
= ; B | d
T.\ ollll > | ENCODER ) » :dl__ﬂ ' > | PROJECTOR |7 = d d
| |
| !
Sl | ' L L
Z 5 ‘9 ', ; ” ¢ 5 d S d
/ \ m } 1B
| |
D] = | EheoRER, I > 4 lm (> LPROFECTOR Y 5 11|~ cross corr IDENTITY
1] ! } MATRIX MATRIX
-

© NAVER LABS Corp.



- Twin Learning for Dimensionality Reduction NAVER LABS

..or TLDR

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION B
B .
= ; B | d
e ol - | eneopery = d[l]] © > [prozecTor || || > 4 d
| |
| !
ad | ' - L
7 8 ” © ', : ” ¢ 5 d > d
/ \ W 1B
of|[| = | ENCODER J » . d [El > [PROJECTOR | 111} 5 cross corr IDENTITY
] ! } d MATRIX MATRIX
sk \

a projector ‘head”

(existe in Barlow Twing)

© NAVER LABS Corp.



- Twin Learning for Dimensionality Reduction NAVER LABS

..or TLDR

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION B
B i
= ; B | d
T.\D > | ENCODER ] = :dl] . > | PROJECTOR |7 = d d
| |
| |
Sl | ' L L
7 8 ” © ', ; ” ¢ 5 d > d
/ \ W I B
| |
D] = | EheoRER, I > 4 [El (> LPROFECTOR Y 5 11|~ cross corr IDENTITY
1] ! } MATRIX MATRIX
-

loss computed in

a d’ -dimencional cpace

© NAVER LABS Corp.



- TLDR: Simple Algorithm NAVER LABS

1: for every point x, calculate the k-nearest neighbors

2: Create positive pairs (x, y) by sampling y from the set of neighbors of x

3: Learn the parameters 6 and ¢ by optimizing the [Barlow Twins] loss

HIGHER-DIMENSIONAL LOWER-DIMENSIONAL
REPRESENTATION REPRESENTATION
: -
|

B
B
- d.T
I.\Dl:\ ~ | ENCODER ] :dl] . > | PROJECTOR |7 __J > d d
I I
| !
I |' ' LBT '
ftﬁgg 8 (COE [ 8 d—\H“a <_—H\\\\
/ \ Lo
| |
o[‘ > | ENCODER J - ‘: 2 PROTECTOR | 5 1111 cross core IDENTITY

MATRIX MATRIX

© NAVER LABS Corp.



- Evaluation tasks & architectures choices NAVER LABS

Large-scale retrieval
e Landmark image retrieval
e Document retrieval

Output dimensions:
64 < d < 256

Baseline method (used in practice):
PCA*: PCA + whitening
Train on large datasets

a query from the RParis dataset
and its “medium” and “ " positives
(Figure adapted from [Radenovi¢ 2018])

Architecture choices:
e Linear encoder
e 2-layer MLP projector with d'>>d

Figure from Radenovi¢, Filip, et al. "Revisiting oxford and paris: Large-scale image retrieval benchmarking." CVPR 2018. © NAVER LABS Corp.



- Results - Landmark image retrieval NAVER LABS

e PCA* (PCA+whitening) is a part of state-of-the-art pipelines (eg [GeM-AP, HOW])
e We simply replace PCA* with linear TLDR (linear encoder)

0.7 T

TLDR (ROxford, 128-dim):

>  +4% mAP [GeM-AP] :

> match [GeM-AP] with
16 times fewer dims

0.2

GeM-AP GeM-AP TLDR GeM-AP GeM-AP TLDR
(2048-d) (PCA*128-d) (128-d) (2048-d) (PCA* 128-d) (128-d)
ROxford (avg) RParis (avg)

[GeM-AP] J. Revaud et al. "Learning with average precision: Training image retrieval with a listwise loss.” ICCV, 2019.
[HOW] Tolias et al. "Learning and aggregating deep local descriptors for instance-level recognition." ECCV 2020.



- Results - Document retrieval NAVER LABS

e Argument retrieval results on [ArguAna]
e F[eatures from [ANCE]

o Match performance of full representation using 4% of the dimensions (PCA needs double)

100 | 100 ]
B p, - - X
90 . ] 90 = |
o B . o - .
S &l | 8 & :
B B ——TLDR [{ g 30 —+—TLDRs =3 [
'c:'c 70 } +TLDR1 _: % 70 } —A—TLDRQ,k:l() _:
2 E —+— TLDRy | 8 . —4— TLDR2 x=100 |
60 = —a—PCA, [ 60 = —a— PCA,, .
50 ; I I I 1 | X ANCE\ E 50 ; I [ [ 1 >I< ANCE T {

8 16 32 64 128 768 8 16 32 64 128 768

d d

[ANCE] L. Xiong et al, "Approximate nearest neighbor negative contrastive learning for dense text retrieval”, ICLR, 2021.

[ArguAna] Wachsmuth et al, "Retrieval of the best counterargument without prior topic knowledge”, ACL 2018
© NAVER LABS Corp.



- Ablations and discussion NAVER LABS

Compared to manifold methods in d < 32:

e TDLR outperforms all ford > 4

e Note: Linear dimensionality reduction

HEEEEEE NN

IS a very strong baseline ford > 8

: : : d
Highlights of TLDR hyper-parameter ablation: ORI ENE)
e High loss (projector output) dimension helps 8
, . ® e .
e TLDR isrobust to approximate k-NN DB N @ > ] s za]
(no perf. loss for up to 99% compression) : “9 | ”(p "
e TLDR is robust w.r.t. k hyper-parameter Dm S @ s dlﬁl ', ‘ ‘i\
'. | d




- Advantages of TLDR NAVER LABS

Generality

o Can compress any meaningful vector input space (no further assumptions)
o many types of encoders (linear/factorized-linear/MLP)

Simplicity

o Robustness to hyper-parameters (also: parameters transfer across tasks)
o Easy-to-optimize loss [Barlow Twins] (no negatives, LARS optimizer)

Scalability

o Learning via mini-batch stochastic gradient descent (very GPU-friendly)
o High resilience to approximate nearest neighbors (+ no graph propagation)

© NAVER LABS Corp.



- TLDR: Easy-to-use code! NAVER LABS

Public code with scikit-learn style API:

https:/github.com/naver/tldr

from tldr import TLDR

tldr = TLDR(n_components=32, n_neighbors=10,

encoder="'linear', projector='mlp-1-2048', device='cuda')
tldr.fit(X, epochs=100, batch size=1024)

Z = tldr.transform(X, 12 norm=True)

Y. Kalantidis, C. Lassance, J. Almazan, D. Larlus. “TLDR: Twin Learning for Dimensionality Reduction”. arXiv, 2021

© NAVER LABS Corp.


https://github.com/naver/tldr

- Take home message NAVER LABS
of}o

e TLDR: A scalable dimensionality reduction method

e Strong performance on many retrieval tasks

e Easy-to-use code publicly available

e Whatis TLDR suitable for?
(Linear) dimensionality reduction to 32 - 256 dims

e Whatis TLDR not suitable for?
Visualizations, representation learning (e.g. vs hand-crafting priors)

Y. Kalantidis, C. Lassance, J. Almazan, D. Larlus.
“TLDR: Twin Learning for Dimensionality Reduction”
arXiv, 2021

© NAVER LABS Corp.



Part 3:
Measuring
Concept Generalization

NAVER LABS



- Concept Generalization (CoG)

Concept Generalization:

The extent to which models trained on a set of (seen)
visual concepts can be used to recognize a set of unseen

target concepts

Dog model: Dr. Beluda

~

Is a model that recognizes cats a

o

good starting point for learning
to recognize dogs?

J

NAVER LABS

© NAVER LABS Corp.



- Concept Generalization (CoG)

Concept Generalization:

The extent to which models trained on a set of (seen)
visual concepts can be used to recognize a set of unseen

target concepts

Dog model: Dr. Beluda

-

Is a model that recognizes cats a

o

good starting point for learning
to recognize corals?

J

NAVER LABS

© NAVER LABS Corp.



- The importance of “semantic distance” NAVER LABS

Hypothesis:
Semantic distance between training (seen) concepts and / — \
target concepts impacts generalization performance \ )

~

/ seen: tiger cat

© NAVER LABS Corp.




- The importance of “semantic distance” NAVER LABS

Hypothesis:
Semantic distance between training (seen) concepts and

target concepts impacts generalization performance

Goal:
Design a better benchmark for measuring concept generalization

© NAVER LABS Corp.



- How do we usually measure concept generalization?

NAVER LABS

Learn model parameters
on ImageNet-1K

Model

© NAVER LABS Corp.



- How do we usually measure concept generalization?

NAVER LABS

Learn model parameters
on ImageNet-1K

Model

Measure performance on
(many) other datasets

Unclear how the concepts in these datasets
relate to the concepts seen during training

Method Food101 CIFARIO CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers
Linear evaluation:

BYOL (ours) 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
SimCLR (repro) 72.8 90.5 74.4 42.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6
SimCLR [8] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
Supervised-IN [8] 72.3 93.6 78.3 53.7 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7

figure from [BYOL]

[BYOL] Grill, et al. "Bootstrap your own latent: A new approach to self-supervised learning." NeurlPS, 2020.

© NAVER LABS Corp.



How do we usually measure concept generalization? NAVER LABS

Learn model parameters
Model
on ImageNet-1K
Measure performance on
(many) other datasets
AN
Method Food101 CIFARIO CIFAR100 Birdsnap SUN397 Cars Aircraft | VOC2007 | DTD  Pets  Caltech-101  Flowers
Linear evaluation:
BYOL (ours) 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
SimCLR (repro) 72.8 90.5 74.4 42.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6
SimCLR [8] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
Supervised-IN [8] 72.3 93.6 78.3 53.7 61.9 66.7 61.0 82.8 749 915 94.5 94.7
figure from [BYOL]

[BYOL] Crill, et al. "Bootstrap your own latent: A new approach to self-supervised learning." NeurlPS, 2020. © NAVER LABS Corp.



- How do we usually measure concept generalization? NAVER LABS

Training or seen concepts
Learn model parameters
on ImageNet-1K

Model

The 20 classes of PASCAL VOC

aeroplane, bicycle, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep,
train, TV

[PASCAL VOC] Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." IJCV, 2010. © NAVER LABS Corp.



- Concept Generalization NAVER LABS

Learn model parameters
on ImageNet-1K

Model

Target concepts
The 20 classes of PASCAL VOC

aeroplane, bicycle, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep,
train, TV

[PASCAL VOC] Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." IJCV, 2010. © NAVER LABS Corp.



- Concept Generalization NAVER LABS

warplane, tandem bicycle,
speedboat, water bottle, minibus,
school bus, trolley bus, scooter, Model
bighorn sheep, bullet train,
television, ox, bison, zebra

The 20 classes of PASCAL VOC

aeroplane, bicycle, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep,
train, TV

[PASCAL VOC] Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." IJCV, 2010. © NAVER LABS Corp.



- Concept Generalization NAVER LABS

warplane, tandem bicycle,
speedboat, water bottle, minibus,
school bus, trolley bus, scooter, Model
bighorn sheep, bullet train,
television, ox, bison, zebra

The 20 classes of PASCAL VOC

aeroplane, bicycle, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep,
train, TV

[PASCAL VOC] Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." IJCV, 2010. © NAVER LABS Corp.



- Concept Generalization NAVER LABS

. warplane, tandem bicycle,
speedboat, water bottle, minibus,
school bus, trolley bus, scooter, Model
bighorn sheep, bullet train,
television, ox, bison, zebra ...

The 20 classes of PASCAL VOC

aeroplane, bicycle, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep,
train, TV

[PASCAL VOC] Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." IJCV, 2010. © NAVER LABS Corp.



- Ingredients for designing a better benchmark NAVER LABS

e Alarge set of concepts
e A controlled setup:
o Disjoint set of training (seen) and testing (unseen) concepts

o Way to measure semantic distance between concepts

© NAVER LABS Corp.



- Step O: Pick a large dataset with many concepts  naverLaBs

Dataset: ImageNet-21K

(Fall 2011 / Winter 2021 release)

v

Large-scale
>14 Million images, >21000 concepts

Very popular training set as subset:
LSVRC subset: [ImageNet-1K]

Each concept corresponds to a synset o M e B e o _ﬂmvessd I et Bl o
from [wordNet] (Figure: https://devopedia.org/imagenet)

[ImageNet] J. Deng, et al and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.
[ImageNet-1K] O Russakovsky, J Deng, et al. Imagenet large scale visual recognition challenge, 1JCV, 2015.
[WordNet] Miller, George A. "WordNet: a lexical database for English.” Communications of the ACM 38.71 (1995): 39-4]1.

© NAVER LABS Corp.



Step 1: Define a disjoint set of seen and unseen concepts  NAVERLABS

/Seen concepts\ Unseen concepts
ImageNet-1K

-~

VWONAOAUDNWNRO

sea squirt

cabbageworm

‘tench, Tinca tinca', o
'goldfish, Carassius auratus', Remove/Fllter:
'tiger shark, Galeocerdo cuvieri', / ImageNet_] K (Seen)
‘hammerhead, hammerhead shark',
Ay pathological concepts
‘cock',
‘ostrich, Struthio camelus',

10: 'brambling, Fringilla montifringilla’,

12: 'house finch, linnet’, HP——

e e approx. 5K eligible concepts

15: 'robin, American robin,’,

16: 'bulbul’,

18: 'magpie’,

19: 'chickadee',

21: ‘'kite',

22: 'bald eagle, American eagle’

‘great white shark, white shark’,
‘electric ray, crampfish, numbfish', /
“hen’, v concepts with few images
11: 'goldfinch, Carduelis carduelis’,
14: 'indigo bunting, indigo finch’,
17: 'jay',
20: 'water ouzel, dipper',
\_ J

toy Manchester

© NAVER LABS Corp.



- Step 2: Define semantic distance between concepts NAVER LABS

Concept-to-concept
semantic similarity:

2 x IC(LCS(c1, ¢2))
IC(c1) + IC(c2)

[Lin similarity] / ‘

simpin (€1, c2) =

European
wildcat

(Note: any other semantic similarity
can be used, e.g. word2vec)

cabbageworm

takin

[Lin similarity] Dekang Lin. "An information-theoretic definition of similarity." ICML 1998 © NAVER LABS Gorp.



- Step 2: Define semantic distance between concepts NAVER LABS

Concept-set-to-concept
semantic similarity:

S° = max simg;,(c, ¢)
¢, € C

cabbageworm

takin

[Lin similarity] Dekang Lin. "An information-theoretic definition of similarity." ICML 1998 © NAVER LABS Gorp.



Step 3: Compute semantic distance between seen and unseen NAVER LABS

/Seen Concepts\ Unseen concepts
ImageNet-1K

-~

VWONAOAUDNWNRO

‘tench, Tinca tinca',

‘goldfish, Carassius auratus',
‘great white shark, white shark’,
‘tiger shark, Galeocerdo cuvieri',
‘hammerhead, hammerhead shark',
‘electric ray, crampfish, numbfish',
‘stingray’,

‘cock',

‘hen',

‘ostrich, Struthio camelus',

10: 'brambling, Fringilla montifringilla’,
11: 'goldfinch, Carduelis carduelis’,
12: 'house finch, linnet’,

13: 'junco, snowbird',

14: 'indigo bunting, indigo finch’,
15: 'robin, American robin,’,

16: 'bulbul’,

17: 'jay',

18: 'magpie’,

19: 'chickadee',

20: 'water ouzel, dipper',

21: ‘'kite',

22: 'bald eagle, American eagle’

cabbageworm

V unseen concept c € U 1 S°= max simp,lc, ¢
)

K j ¢; € IN-1k

© NAVER LABS Corp.



- Step 4. Rank unseen concepts w.r.t. distance to seen NAVER LABS

/Seen Concepts\ Unseen concepts
ImageNet-1K

cench, Tinca tincar, Increasing semantic distance to the set of seen concepts

{e:

1: 'goldfish, Carassius auratus',

2: 'great white shark, white shark’,

3: 'tiger shark, Galeocerdo cuvieri',
4: 'hammerhead, hammerhead shark',

5: 'electric ray, crampfish, numbfish',
6: 'stingray',

7: 'cock',

8: 'hen',

9: 'ostrich, Struthio camelus',

10: 'brambling, Fringilla montifringilla’,
11: 'goldfinch, Carduelis carduelis’,

European toy Manchester jackal cabbageworm sea squirt

12: 'house finch, linnet’, wildcat
13: 'junco, snowbird',

14: 'indigo bunting, indigo finch’,
15: 'robin, American robin,’,

16: 'bulbul’,

oo Rank all unseen wrt semantic distance to ImageNet-1K (seen)

19: 'chickadee',

20: 'water ouzel, dipper',

21: ‘'kite',

22: 'bald eagle, American eagle’

N )

© NAVER LABS Corp.



-~

VWONAOAUDNWNRO

/ Seen conce pts\

ImageNet-1K

‘tench, Tinca tinca',

‘goldfish, Carassius auratus',
‘great white shark, white shark’,
‘tiger shark, Galeocerdo cuvieri',
‘hammerhead, hammerhead shark',
‘electric ray, crampfish, numbfish',
‘stingray’,

‘cock',

‘hen',

‘ostrich, Struthio camelus',

‘brambling, Fringilla montifringilla’,
‘goldfinch, Carduelis carduelis',
'house finch, linnet’,

'junco, snowbird',

'indigo bunting, indigo finch’,
‘robin, American robin,’,
‘bulbul’,

‘Jay',

‘magpie’,

‘chickadee’,

‘water ouzel, dipper',

‘kite',

'bald eagle, American eagle’

Step 5: Split ranked list into CoG “Levels”

/

NAVER LABS

Unseen concepts

Increasing semantic distance to the set of seen concepts

European takin cabbageworm

wildcat

'I L2 L3 L4 L5

toy Manchester jackal sea squirt

e Split the ranked list in five Concept Generalization (CoG) Levels

e FEach as big as ImageNet-1K (1000 classes, 1.15M images)

© NAVER LABS Corp.



- The ImageNet-CoGC Benchmark NAVER LABS

CoG-levels: A sequence of five [.; — Ly datasets of unseen concepts

..each with increasing semantic distance to the seen (ImageNet-1K)

Evaluation protocol:

1) Extract features using a model trained on ImageNet-1K (frozen)

2) Learn linear classifiers for ImageNet-1K and each of the five CoG levels

We can evaluate any public ImageNet-1K pre-trained model out-of-the-box!

© NAVER LABS Corp.



NAVER LABS

- Evaluating 30+1 recent models

| ResNet50

| Baseline model from the torchvision package (25 .5M)|

Architecture: Models with different backbone

a-T2T-ViT-t-14 [/ ] Visual transformer (21.1M)
a-DeiT-S [1] Visual transformer (21.7M)
a-DeiT-S-distilled [(] Distilled a-DeiT-S (21.7M)

Self-supervision: ResNet50 models trained in this framework
s-SimCLR-v2 [7, 1] Online instance discrimination (ID)
s-MoCo-v2 [ 1,24] ID with momentum encoder and memory bank

. = : s-BYOL [ 1] Negative-free ID with momentum encoder
a-Inception-v3 [ ] CNN with inception modules (25.1M) s-MoCHi [*] ID with negative pair mining
a-NAT-M4 [5¢] Neural architecture search model (7.6M) s-InfoMin [*¢] ID with careful positive pair selection
a-EfficientNet-B1 [*©] Neural architecture search model (6.5M) 5-OBoW [ 1] Online bag-of-visual-words prediction
a-EfficientNet-B4 [50] Neural architecture search model (17.5M) s-SWAV [ 7] Online clustering
a-DeiT-B-distilled [60] Bigger version of a-DeiT-S-distilled (86.1M) s-DINO [¢] Online clustering

a-ResNetl52 [25] Bigger version of ResNet50 (58.1M) s-BarlowTwins [/ /] Feature de-correlation using positive pairs

a-VGG19 [57] Simple CNN architecture (139.6M) s-CompReSS [(] Distilled from SimCLR-v1 [©] (with ResNet50x4)
Regularization: ResNet50 models with additional regularization
r-MixUp Label-associated data augmentation Use of web data: ResNet50 models using additional data
r-Manifold-MixUp | Label-associated data augmentation d-MoPro [34] Trained on WebVision-V1 (~ 2x)
r-CutMix Label-associated data augmentation d-Semi-Sup [0/] Pretrained on YFCC-100M (~ 100x), fine-tuned on IN-1K
r-ReLabel Trained on a “multi-label” version of IN-1K Z‘éinllfl;?’e?le-Sup [67] gz;f:geoi %I:/:t()inllf g;e)l(?(()O ><4)6 éi:?tuned on IN-1K
r-Adv-Robust Adpversarially robust model £
r-MEAL-v2 Distilled ResNet50

© NAVER LABS Corp.



- Results on ImageNet-CoG NAVER LABS

How resilient are models to the semantic distance between seen and unseen concepts?

85 1
80 1

751

Verifying our hypothesis:

-
f=}
L

It is harder to generalize to
semantically distant concepts

Top-1 accuracy
(=2
ot

=)
(=]
L

551

50

45

IN-1K L Ly Ls Ly Ls

© NAVER LABS Corp.



- Results on ImageNet-CoG NAVER LABS
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- Results on ImageNet-CoG NAVER LABS

e}

% ;| A Self-supervised learning

% e - . A

= o AT N Self-supervised models excel at

9 R — concept generalization

+ 1 Pl ; ...... .,':."“

) S —— Sy

> | & 77— L — -~

;g 0 i;::‘ ...... e o i

AN E /7 G =

&

g

2 Self-Supervision

o B 5-DINO * 5-SimCLR-v2

! . . | | | A s-SWAV *+ s-MoCo-v2
IN-1IK I, Lo Ls Lig T » s-BarlowTwins | # s-MoCHi
< 5s-OBoW @ 5-CompReSS
Vv s-BYOL ¢ s-InfoMin
@ ResNet50

© NAVER LABS Corp.



- Results on ImageNet-CoG NAVER LABS

o
1

Accuracy relative to ResNet50
o

] %
N e
e e *....
® —0
ey
.............. o,
L
"' ........ ‘ ------
8 B e — r,
g
........... il
T T T T ! ..é
IN-IK Ly Ly, Ly Li Lj
@ ResNet50

Regularization

e Model distillation generally
improves CoG performance.

e |abel-associated augmentation
techniques deteriorate CoG
performance.

Regularization

B r-ReLabel Vv r-Adv-Robust
A r-CutMix % r-MEAL-v2
» r-MixUp

<« r-Manifold-MixUp

© NAVER LABS Corp.



- Results on ImageNet-CoG

NAVER LABS

Visual transformers overfit more to

Neural architecture search seems
promising for concept generalization

Transformer

\ NAS & Other

A a-T2T-ViLt-14 (21.1M)
» a-DeiT-S (21.7M)

< a-DeiT-S-distilled (21.7M)
v a-DeiT-B-distilled (86.1M)

% a-Inception-v3 (25.1M)

#= a-EfficientNet-B1 (6.5M)
¥ a-EfficientNet-B4 (17.5M)
© a-NAT-M4 (7.6M)

¢ a-VGG19 (139.6M)

2 1 Architecture
-~
0 51
é | h..‘ ’.: .
o | & 4 ........ " D e < seen conce pts
TR — | o
.g 04 @ :o: S — e |
it p S
8 ¢ p—
B e
§ * ResNet
8 @ ResNet50 (23.5M)
< —5 1 M a-ResNet152 (58.1M)
IN-1IK Ly Lo Ls L, Ls
@® ResNet50
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- Results on ImageNet-CoG NAVER LABS

0] (0]
o ot
1 1

N
ot
1

Top-1 accuracy (in %)
o ~
ot o

D
o
1

o
(@31
1

——

d-Semi-Weakly-Sup.

- sDINO

a-DeiT-B distilled

ResNet50

IN-1K L, L,
Levels

What are the top-performing models overall
for concept generalization?

e Models with better and larger
architectures
Models pretrained with additional data
Self-supervised models!

© NAVER LABS Corp.



- Take home message

ImageNet-CoG: a new benchmark

O

O

Enables measuring Concept Generalization in a controlled way

Sequence of “levels” of unseen concepts (from ImageNet-21K)
with increasing semantic distance to the seen (ImageNet-1K)

Analysis of many recent methods (out-of-the-box)

Easy to test your ImageNet-1K model:

https:/github.com/naver/cog

NAVER LABS

MB Sariyildiz, Y. Kalantidis, D. Larlus, K. Alahari.
“Concept generalization in visual representation learning.”
ICCV 2021

© NAVER LABS Corp.


https://github.com/naver/cog

Y Overview of this talk NAVER LABS

Part 1 Part 2 Part 3

N\ (¢ N (4

an we use recent visual

( )

ow can we im,orove the ow can we medasure

transfer learning SSL frameworks for concept generalization in
performance of dimensionality a more principled way?
contrastive SSL? reduction?

MoCHi
\Neurips 2020

TLDR
\Arxiv 2021

ImageNet-CoG
\ICCV 2021 i /

[MoCHi] Kalantidis et al. "Hard negative mixing for contrastive learning." NeurlPS 2020.
[TLDR] Kalantidis et al. "TLDR: Twin Learning for dimensionality reduction" arXiv 2021.
[ImageNet-CoG] Sariyildiz, Kalantidis et al. "Concept Generalization in Visual Representation Learning” ICCV 2021.

icons: Flaticon.com  ©NAVERLABS Corp.



- About Yannis NAVER LABS

Grew up in Athens, Greece
2009 - 2014: PhD at NTUA (Athens) supervised by Yannis Avrithis

o Retrieval, clustering, nearest neighbor search [ECCV12, CVPR14, ICCV15]

e 2015 - 2017: Researcher at Yahoo Research (San Francisco)

o  Web-scale search/classification systems [NeurlPS17 LSCVS workshop best paper]
o Vision and language [1JCV17, CHI17, WSDM17, PAMI19]

e 2017 - 2019: Researcher at Facebook Al (Menlo Park)
o Deep architectures for vision [ECCV18, NeurlPS18, ICCV19, CVPRI19a]
o Video understanding/summarization [CVPR19c, CVPRI19d]
o Vision and language [AAAIN9, CVPRI19b, ECCV20]
o Long-tail recognition [ICLR20]

e 2020- now: Researcher at NAVER LABS Europe (Grenoble)

o Learning from limited resources [NeurlPS20, ICCV21]
o Learning expressive representations [CVPR21]
o Learning adaptive (multi-modal) systems

© NAVER LABS Corp.


https://europe.naverlabs.com/

- Computer Vision @ NAVERLABS NAVER LABS

Teams focusing on CV and 3D Vision

e 33 researchers/postdocs/PhDs/engineers

e 30+ top-tier publications in 2020 & 2021
(CVPR/ECCV/NeurlPS/IICV/ICLR/ICRA/IROS)

e Many collaborations

o  Other NLE teams
(ML & Optimization and NLP teams)

o  Other NAVER Corp entities
(NAVER Al Labs, CLOVA Al, NAVER LABS KOREA)

o  Academic collaborations with top-tier universities/institutes
(University of Oxford, University of Bristol, CTU in Prague, Inria,
IRI, LAAS, ENPC, SNU, MIAI Institute Grenoble)

Research scientist positions open!
) Research internships possible year-round!

I\JIV-\I https://europe.naverlabs.com

Grenoble Alpes © NAVER LABS Corp.




NAVER LABS

https://europe.naverlabs.com
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Thank you!
Questions?

https://europe.naverlabs.com e
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- Self-supervised learning NAVER LABS

Has deeply impacted the field of Al:

e Enables utilizing unlabeled data
e Revolutionized NLP (BERT/GPT-3 etc)

e Core component of CV state-of-the-art

[Pieter Abbeel’s cake]

[Albanie et al’s cake]

Note the

[Yann LeCun’s cake] Yann LeCun’s talks (NeurlPS 2016 and many after) abundance ,)f/ﬂy”g “
[Pieter Abbeel's cake] Pieter Abbeel. NeurlPS 2017
[Albanie et al.’s cake] Albanie, Thewlis, Henriques. SIGBOVIK 2018

© NAVER LABS Corp.



- Self-supervised proxy task NAVER LABS

Predictive/Generative

Pretext Image | Standard Pretext
Transform Learning

e Formulated as synthesis or ¥ It
classification :

I -
ConvNet

Transform t
! 3 Predict property of t

It
Figure from [PIRL]

[PIRL] Misra, Ishan, and Laurens van der Maaten. "Self-supervised learning of pretext-invariant representations." CVPR 2020.
© NAVER LABS Corp.



- Self-supervised proxy task NAVER LABS

Predictive/Generative

Pretext Image Pretext Invariant
Transform Representation Learning

I I
' '

Transform t [ St ] w

t
1 I

Contrastive T

e |earninginvariance toa Encourage to be similar
“pretext” task Figure from [PIRL]

e Formulated as synthesis or
classification

[PIRL] Misra, Ishan, and Laurens van der Maaten. "Self-supervised learning of pretext-invariant representations." CVPR 2020.
© NAVER LABS Corp.



- Contrastive Learning NAVER LABS

e Given a set of similar/positive and dissimilar/negative pairs of inputs

e |earn representations such that the feature similarity between
“similar” inputs is higher than “dissimilar”

Tardar Sauce

@timmystoebeans
@realgrumpycat © NAVER LABS Corp.



NAVER LABS

anchor

positive

negative

@timmystoebeans
@realgrumpycat © NAVER LABS Corp.



@timmystoebeans
@realgrumpycat

Model

Model

Model

NAVER LABS
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@timmystoebeans
@realgrumpycat

Model

Model

Model

NAVER LABS
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@timmystoebeans
@realgrumpycat

Model

Model

Model

NAVER LABS
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@timmystoebeans
@realgrumpycat

Model

Model

Model

NAVER LABS
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Learning invariance to image transformations

Selected references

NAVER LABS

-

Contrastive

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." arXiv 2018.
[InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.

[PIRL] Misra, Ishan, and Laurens van der Maaten. "Self-supervised learning of pretext-invariant representations." CVPR 2020.
[SIimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.

[MoCo-v2] Chen et al. “Improved Baselines with Momentum Contrastive Learning”. arXiv preprint 2020.

[SWAV] Caron, Mathilde, et al. "Unsupervised learning of visual features by contrasting cluster assignments." NeurlPS 2020.
[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurlPS 2020.

[ICL] Cai et al. “Joint Contrastive Learning with Infinite Possibilities”. NeurlPS 2020.

[MoCo-v3] Chen et al. “An Empirical Study of Training Self-Supervised Vision Transformers” arXiv preprint 2021.

[DINO] Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. ICCV 2021.

[MoBYy] Xie et al. "Self-supervised learning with swin transformers." arXiv preprint 2021.

[DirectCLR] Li, et al. "Understanding Dimensional Collapse in Contrastive Self-supervised Learning." arXiv preprint 2021.

Non-Contrastive
[BYOL] Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." NeurlPS 2020.
[SimSiam] Xinlei Chen and Kaiming He “Exploring Simple Siamese Representation Learning.” CVPR 2021.
[Barlow Twins] Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction” ICML 2021.
\ [DirectPred] Tian et al. “Understanding self-supervised Learning Dynamics without Contrastive Pairs” ICML 2021.

~

J

© NAVER LABS Corp.



- Contrastive self-supervised learning NAVER LABS

Positive pair: Two transformed versions of the same image

Negative: Any other image [Exemplar-CNN, InstDistr]

\

counter intuitive for clacsification!

we push representations of fwo

images from the came clacs apart

[Exemplar-CNN] Dosovitskiy, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks." TPAMI 2015]
[InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.

Cat Model: Tardar Sauce (a.k.a. grumpy cat) © NAVER LABS Corp.



Appendix: MoCHi




- Mixing of Contrastive Hard Negatives NAVER LABS

e Feature Normalization

h; , where hy, = agn; + (1 — ax)nj,

_ Tk
[h |2

e We run MoCHi on top of [MoCo-Vv2]
o 2-layer MLP head, cosine learning rate

e MoCHIi notation:

MoCHi (N, s, s')

[MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020) © NAVER LABS Gorp.



- Mixing of Contrastive Hard Negatives NAVER LABS

e Feature Normalization

h =
hy = ———, where hy = axn; + (1 — ax)n;,

e I

e We run MoCHi on top of [MoCo-Vv2]
o 2-layer MLP head, cosine learning rate

e MoCHIi notation:

MoCHi (N, s, s')

\

How many of the hardest
existing negatives to use?

© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

e Feature Normalization

h =
hy = ———, where hy = axn; + (1 — ax)n;,

e I

e We run MoCHi on top of [MoCo-Vv2]
o 2-layer MLP head, cosine learning rate

e MoCHIi notation:

MoCHi (N, s, s')

'

How many points to synthesize
by mixing two negatives?

© NAVER LABS Corp.



- Mixing of Contrastive Hard Negatives NAVER LABS

e Feature Normalization

h =
hy = ———, where hy = axn; + (1 — ax)n;,

e I

e We run MoCHi on top of [MoCo-Vv2]
o 2-layer MLP head, cosine learning rate

e MoCHIi notation:

MoCHi (N, s, s')

\

How many points to synthesize by
mixing the query with a negative?

© NAVER LABS Corp.



Object Detection Instance Segmentation
Pre-train | Apbb APZS AP% | Apmk APZLE APZEF
Supervised [13] | 38.2 58.2 41.6 | 33.3 54.7 35:2
| 100 epoch pre-training
MoCo-v2 [6] 37.0 +0.1) 56.5 (+0.3) 39.8 (+o0.1) 32.7 +o0.1) 53.3 0.2 34.3 (+0.1)

+ MoCHi (256, 512, 0)
+ MoCHi (128, 1024, 512)

37.5 xo0.1) (10.5)
37.8 +o0.1) (10.8)

57.0 xo.1) (10.5)
57.2 (+0.0) (10.7)

40.5 +0.2) (10.7)
40.8 (+0.2) (11.0)

33.0 0.1y (10.3)
33.2 0.0) (10.5)

53.9 0.2 (10.6)
54.0 +o0.2) (10.7)

34.9 +o0.1) (10.6)
35.4 (0.1 (T1.1)

200 epoch pre-training

MoCo [13] 38.5 58.3 41.6 33.6 54.8 35.6
MoCo (1B image train) [13] 39.1 58.7 42.2 34.1 554 36.4
InfoMin Aug. [28] 39.0 58.5 42.0 34.1 55.2 36.3
MoCo-v2 [6] 39.0 (+0.1) 58.6 (+o0.1) 41.9+0.3) 34.2 +0.1) 554 o1 36.2 (+0.2)

+ MoCHi (256, 512, 0)
+ MoCHi (128, 1024, 512)
+ MoCHi (512, 1024, 512)

39.2 0.1y (10.2)
39.2 (x0.1) (10.2)
39.4 (+o0.1) (10.4)

58.8 (+0.1) (10.2)
58.9 (+0.2) (10.3)
59.0 (+o0.1) (10.4)

42.4 +o.2) (10.5)
42.4 +0.3 (10.5)
42.7 +0.1) (10.8)

34.4 +0.1) (10.2)
34.3 (+0.1) (10.2)
34.5 (+o0.0) (10.3)

55.6 +o0.1) (10.2)
55.5 «o.1) (10.1)
55.7 +o0.2) (10.3)

36.7 +o0.1) (10.5)
36.6 (+o0.1) (10.4)
36.7 (+o.1) (10.5)

Gains also consistent on COCO:
e MOoCHI outperforms recent methods like [InfoMin Aug]

[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurlPS 2020.

© NAVER LABS Corp.



- Uniformity and alignment scores [Wang & Isola] ~ waverLages
Alignment )

e Average distance between representations IR
with the same class w— N .
=g——
Alignment: Similai samples havZ similar features.
Uniformity

e Average pairwise distance between all
embeddings

Uniformity: Preserve maximal information.

[Wang & Isola]l Wang, Tongzhou, and Phillip Isola. "Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere." ICML 2020.

© NAVER LABS Corp.



- Analysis using a class label “oracle” NAVER LABS

False Negatives (FN): Use ImageNet labels

to measure negative items that are:
e from the same class asthe q
e Highly rank wrt logits, i.e. in the
top-1024 highest logits for q

% of False Negatives

—_
=
()

—_
1
ot

N
o

V Synth where 1/2 points is FN
W Synth where 2/2 points is FN

ﬁ

= MoCo-v2

== MoCo-v2 Class Oracle
= MoCo-v2 + MoCHi(1024, 1024, 0)

= MoCo-v2 + MoCHi(1024, 1024, 128)

= MoCo-v2 + MoCHi(1024, 1024, 128) Class Oracle

B o & o o om m o

50 75

100 125
Epochs

150 175 200

Observations when looking at FN across
epochs:

e FN inthe top-kincrease with training

e Only asmall percentage (~1%) of the
points synthesized with MoCHi are
definitely FN

e MoCHIi has overall a smaller
percentage of false negatives than
MoCo

Why does MoCHi perform better for
downstream tasks?

© NAVER LABS Corp.



- Uniformity and alignment scores [Wang & Isola] ~ waverLages

Ll
Alignment
Supervised
Supervised > MoCo > MoCH -0.6
. . L —0.7
This result confirms the plot 5
g MoCHi Oracle
o0-0.8 ®
< MoCo-v2 Oracle®
s -0.9
12:5 MoCo-v2®
$10.0 MoCHi (1024, 128, 256)®
% -0 MoCHi (1024, 1024, 128)®
& s 20 22 24 26 28
“ Uniformity
% == MoCo-v2
= 5.0 = Mocovs S AhOHont, 1024, 0
. == MoCo-v2 + MoCHi . 5
o = MoCov2 + MoCHI(1024, 1024, 125)
S = MoCo-v2 + MoCHi(1024, 1024, 128) Class Oracle 80 82 84 86
=]
2 25 V Synth where 1/2 points is FN Toplivacuraey
M Synth where 2/2 points is FN
25 50 75 100 125 150 175 200
Epochs

© NAVER LABS Corp.



- Uniformity

Utilization of the embedding space

e Contrastive SSL (MoCo) utilizes the
embedding space “more” than training
with Cross Entropy (supervised)

-0.6

|
e
q

Alignment
o
[e0]

-1.0

NAVER LABS

Supervised

I\./IoCHi Oracle
MoCo-v2 Oracle®

MoCo-v2@®

MoCHi (1024, 128, 256)®
MoCHi (1024, 1024, 128)®

2.0 2.2 2.4 2.6 2.8
Uniformity

B 00

80 82 84 86
Topl Accuracy

© NAVER LABS Corp.



- Uniformity

Utilization of the embedding space

Contrastive SSL (MoCo) utilizes the
embedding space “more” than training
with Cross Entropy (supervised)

Adding synthetic hard negative
(MoCHi) results in utilizing the space
even more!

NAVER LABS

Supervised

-0.6

-0.7
o
C
£
_5\—0.8 |\./|OCHI Oracle
< MoCo-v2 Oracle®

-0.9

MoCo-v2@®

MoCHi (1024, 128, 25§)®
=10 MoCHi (1024, 1024, IR8)®

2.0 2.2 2.4 2.6 2.
Uniformity

80 82 84 86
Topl Accuracy

© NAVER LABS Corp.



What if we didn't have FN?

Supervised
e Upper bound: simply discard images with the same labelastt ™
negatives g™
€ A
':E:_O's MoCo-v2 OracIeI\.AOOCHI et
e Oracle runs show: s

MoCo-v2®

o higher percentage of FN ,) MoCHi (1024, 126, 25619

=10 MoCHi (1024, 1024, 128)®

o higher alignment score 12.5 20 22 2% 26 2%
n
£10.0 [ —
B 80 82 84 86
gb Topl Accuracy
2 75
% = MoCo-v2
= == MoCo-v2 Class Oracl
&46 5.0 = MoCov2 4 81518001-18‘1‘(:1%24, 1024, 0)
Gy == MoCo-v2 + MoCHi(1024, 1024, 128)
o == MoCo-v2 + MoCHi(1024, 1024, 128) Class Oracle
(=]
B 25 V Synth where 1/2 points is FN
M Synth where 2/2 points is FN
R e
W—- 27
25 50 75 100 125 150 175 200

Epochs

© NAVER LABS Corp.



What if we didn't have FN?

Linear classification accuracy (ImageNet-100)

e Upper bound: simply discard images with the Using Class Orgels
MoCo-v2* (200 epochs)

neg atives + MoCHi (1024, 1024, 128) (200 epochs)
+ MoCHi (1024, 1024, 128) (400 epochs)
+ MoCHi (1024, 1024, 128) (800 epochs)

Cross-entropy classification (supervised)

e Oracle runs show:
o higher percentage of FN
o higher alignment score

Acc | AP-50 AP AP-75
e Performance:

Using Class Oracle
o Closin gt he gap with su pe rvised  Cross-entropy classification (supervised) ’ 76.1 | 813 58.8

MoCo-v2 [10] + MoCHi (512, 1024, 512) 726 | 833

/ \ J
Y
ImageNet-1K PASCAL VOC

see also: Khosla, Prannay, et al. "Supervised contrastive learning." NeurlPS 2020. © NAVER LABS Corp.
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- Datasets and tasks of the main paper NAVER LABS

Task (Metric) Input feature space Dimensionality reduction dataset Test dataset
ResNet50 features
Landmark Retrieval D = 2048 Google Landmarks ng);afg:gg((éil)()
(mAP) trained on Landmarks-clean (40k) [55] (1.5M) [40]
[3, 17] |
BERT Features

Argument Retrieval D =768 Webis-Touché 2020 (380k) ArguAna (3k)
(Recall@100) trained on MSMarco (8.8M) [6] [54]

[36]

Table 1: Datasets and tasks of the main paper.

© NAVER LABS Corp.



- Methods compared for Image Retrieval

NAVER LABS

Method (Self-) supervision | Encoder Projector Loss | Notes
PCA P lin {ieai Reconstruction MSE | Used for dimensionality reduction
[38] UHSUpSEvISe i + orthogonality in SoTA methods like DELF, GeM, GeM-AP and HOW
DrLim neighbor-supervised | MLP None Contrastive [20] (very low performance)
Contrastive | neighbor-supervised | linear MLP Contrastive [20] with projector
MSE unsupervised linear MLP Reconstruction MSE | TLDR with MSE loss
TLDRg denoising linear MLP Barlow Twins TLDR with noise as distortion
TLDR neighbor-supervised | linear MLP Barlow Twins
TLDR; neighbor-supervised | fact. linear MLP Barlow Twins
TLDR7 , neighbor-supervised | MLP MLP Barlow Twins

Table 2: Compared Methods. For unsupervised methods the objective is based on reconstruction, neighbor-supervised
methods utilize nearest neighbors as pseudo-labels to learn, denoising learns to ignore added Gaussian noise.

© NAVER LABS Corp.



- TLDR: Landmark image retrieval results NAVER LABS

ROxford5K RParis6K
0.55 0.7 ' ‘

0.5 - 0.65

—— TLDR —a— TLDR;,
—a— TLDR]} —¢— TLDRg ]
—4— MSE  —— Contrastive
—— PCA,, X GeM-AP

| v | i 05 - ‘ |
32 64 128 256 512 2048 32 64 128 256 512 2048

d d

—&— TLDR —aA— TLDR;,
04| —a— TLDR]} —— TLDRg N 0.55
i —s%— MSE = —— Contrastive
—8— PCA,, X GeM-AP

[

0.35 &

Figure 2: Image retrieval experiments. Mean average precision (mAP) on ROxford5K (left) and RParis6K (right)
as a function of the output dimensions d. We report TLDR with different encoders: linear (TLDR), factorized linear
with 1 hidden layer (TLDR;), and a MLP with 1 hidden layer (TLDRY), the projector remains the same (MLP with 2
hidden layers). We compare with PCA with whitening, two baselines based on TLDR, but which respectively train
with a reconstruction (MSE) and a contrastive (Contrastive) loss, and also with TLDRg, a variant of TLDR which uses
Gaussian noise to synthesize pairs. The original GeM-AP performance is also reported.

w NAVER LABS Corp.



0.7

0.6

0.5

mAP

0.4
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Figure 4: Impact of TLDR hyper-parameters with a linear encoder and d = 128. Dashed (solid) lines are for
RParis6K-Mean (ROxford5K-Mean). (Left) Impact of the auxiliary dimension d’ and the number of hidden layers
in the projector. (Right) Impact of the number of neighbors k. We see how the algorithm is robust to the number of

neighbors used.
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- Comparisons to manifold learning & a-NN NAVER LABS
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(a) Comparisons to manifold learning methods. (b) Effect of approximate nearest neighbors.
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- Twin Learning for Dimensionality Reduction NAVER LABS

Compared to manifold learning methods:
o Trivially scalable w.r.t. dataset size
o Trivial out-of-sample generalization
o Higher performance than all methods tested for d > 8

Compared to linear dimensionality reduction (eg PCA/ICA):

o ldentical encoding speed (linear encoder)
o Higher performance than the best linear variant on most tasks we tested
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Appendix: CoG




- The ImageNet-CoGC Benchmark

-~

VWONAOAURNWNRO

/ Seen concepts: \

ImageNet-1K

‘tench, Tinca tinca',

‘goldfish, Carassius auratus',
‘great white shark, white shark’,
‘tiger shark, Galeocerdo cuvieri',
‘hammerhead, hammerhead shark',
‘electric ray, crampfish, numbfish',
‘stingray’,

‘cock',

‘hen',

‘ostrich, Struthio camelus',

‘brambling, Fringilla montifringilla’,

: ‘'goldfinch, Carduelis carduelis’,

'house finch, linnet’,

: 'junco, snowbird',

'indigo bunting, indigo finch’,

: 'robin, American robin,’,
: 'bulbul',

—

NAVER LABS

Unseen concepts:
filtered ImageNet-21K

toy Manchester

European wildcat jackal cabbageworm sea squirt

Rank them wrt their semantic distance to ImageNet-1K
e Linsimilarity [Lin] over the WordNet graph
e Use concept-to-set Lin similarity /

[Lin] Dekang Lin. "An information-theoretic definition of similarity." ICML 1998



- The ImageNet-CoGC Benchmark

>, é 0.96 = o T B Ignored |
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gz = ——— 1L,
SE 051 =T
g ] Ny
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e ]
0 5145
L, L, L, Ls; Lz

Eligible unseen concepts from IN-21K ranked by similarity
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Nearest neighbor per Level - “orange” NAVER LABS

n07747607 (IN-1K): orange n07749312 (Level-1): Valencia orange n07767171 (Level-2): mulberry

1

e B[

© NAVER LABS Corp.



- Concept generalization benchmark wishlist

We would ideally have:

NAVER LABS

e Disjoint set of seen (training) and unseen (target) concepts N  possible
e Same image and class statistics if using a single
o overall size, # concepts, # images per class > large dataset

o Same domain/sampling strategy of images
e Same annotation process and similar label noise
e Known “semantic distance” between seen and target concepts
e Bonus: it should be easy for researchers to evaluate \ \

possible if we
use a popular
training set

Can we design a benchmark that
would satisfy all these?

for training and
transfer
J

possible if
thereisa
concept
ontology
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- Fine-tuning and feature dimensions NAVER LABS

Model Feature Dim.

All models with ResNet [25] backbone

a-T2T-ViT-t-14 [ 73]
a-DeiT-S [60]
a-DeiT-B-distilled [60]
a-NAT-M4 [38]

a-EfficientNet-B1 [56]
a-EfficientNet-B4 [56]
a-VGG19 [57]

2048
384
384
768

1536

1280

1792

4096

Table 3: Unique architectures used by the models we evalu-
ate in Sec. 4 of the main paper and the dimensionality of the

feature vectors we extract from these architectures.

Top-1 accuracy
relative to “Fine-tuned”
|
ot

1 @ Fine-tuned
—10 { ~® Pre-extracted

INGK Ly Iy Is Ia s

Figure 6: Comparison of training linear classifiers on pre-
extracted features vs. fine-tuning backbones on each level.
Y-axis shows the top-1 accuracies obtained relative to the
accuracy of the fine-tuned models.
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- Label noise in ImageNet-CoG

NAVER LABS

Concepts in Ly

Rock climbing Handball

Ptarmigan Dalmatian

Ground Truth
Predictions by IN-1K classifier Predictions by L5 classifier
Predicted labels Cliff Soccer ball Peak Snow
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word2vec as semantic distance

o0

Random
:. ‘@ 9. .
. ..
h S ®

+®- WordNet + Lin
@ Text + Word2Vec

7519

70 ]
>
2
g 65 -
[
T,
& 60

55 -

IN-IK L,

Figure 7: Semantic similarities of the concepts captured
by (i) Lin similarity [36] on WordNet graph [43] and (ii)
cosine similarity of word2vec embeddings [68] extracted
from textual descriptions of concepts, vs. visual similarities
encoded by ResNet50, on IN-1K and generalization levels
L1/2/3/4/5 of ImageNet-CoG. We report the performance
of linear logistic regression classifiers trained on features

extracted from the global average pooling layer of ResNet50.

The orange line shows results obtained on 1000 random
unseen concepts (line represents the mean accuracy obtained

over 15 random splits).

NAVER LABS
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- Generalization to unseen concepts NAVER LABS

Accuracy relative to ResNet50

Additional noisy (web) data

Using noisy web data highly
improves concept generalization

Note:
CLIP model comparison is unfair
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- Generalization from a few samples per concept NAVER LABS
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e Transformer-based models are strong few-shot learners
e Model Distillation and Neural Architecture Transfer exhibit consistent gains
e Bigger models and additional web data help at few shot learning
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