
Learning Reachable Manifold and Inverse Mapping for a Redundant
Robot manipulator

Seungsu Kim and Julien Perez

Abstract— Validating the kinematic feasibility of a planned
robot motion and finding corresponding inverse solutions are
time-consuming processes, especially for long-horizon manip-
ulation tasks. Most existing approaches are based on solving
iterative gradient-based optimization, so the processes are time-
consuming and have a high risk of falling in local minima. In
this work, we propose a unified framework to learn a kinematic
feasibility model and a one-shot inverse mapping model for a
redundant robot manipulator. Once they are trained, the models
can compute the kinematic reachability of a target pose and
its inverse solutions without iterative process. We validate our
approach using a 7-DOF robot arm with an object grasping
application.

I. INTRODUCTION

One of the challenges for robot motion planning is val-
idating the feasibility of planned robot motions within the
robot’s constraints (e.g., kinematic limits, geometric con-
straints, self-collision, etc.). One of the reasons is based on
the time-consuming operations of solving optimization and
the problem of falling on local minima. Such problems can
be even harder for sequential robot manipulation planning,
as kinematic and dynamic feasibility for each time step
of the planned long-horizon trajectory should be validated.
One of the approaches to tackle such an issue is modeling
the kinematic feasibility manifold of a robot end-effector
offline, and directly querying the feasibility from the model.
In this context, a continuous reachable manifold learning
approach [1], [2] is proposed to validate the feasibility of
task space motions for a robot manipulator. Having such
a reachable manifold in task space is very beneficial in
several aspects. 1) A robot can plan its motion in task space
without checking time-consuming iterative feasibility checks
along a planned trajectory. Especially, for an action policy
learning using reinforcement learning, discarding infeasible
action space will reduce drastically the training iterations.
2) In object grasping tasks, this approach can provide an
instant solution to discard infeasible grasping poses in terms
of robot reachability with the respective robot’s current base
coordinate system. 3) Besides, it is a good indication to
quantify the richness of solutions to place a robot end-
effector to a target end-effector pose.

NAVER LABS Europe, 6 chemin de Maupertuis, Mey-
lan, 38240, France seungsu.kim@naverlabs.com,
julien.perez@naverlabs.com

c©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in
other works.

Although such a reachable manifold provides a good
indication of kinematic feasibility and richness of inverse
mapping solutions for a given robot Cartesian space task,
we have to compute configuration space values to control
the robot. Indeed, such an inverse mapping problem is a
classic problem in robotics. However, most of the adopted
solutions are gradient (more specifically Jacobian) based
iterative approaches in the velocity level. Also, the results
are highly affected by initial joint configurations and null-
space reference postures [3] for a redundant manipulator.
Various learning approaches for this problem have been
applied [4][5]. However, learning one-shot inverse mapping
problem (to estimate joint configuration without iterative
process for a target pose) for redundant manipulators are still
challenging as is an one-to-many mapping. Indeed, there are
infinite solutions (in joint configuration space) to put a robot
end-effector to a specific pose for a redundant manipulator.

In this paper, we consider diversity of inverse solutions
for a redundant manipulator to place its end-effector to a
specific pose, i.e., multi-modal distribution. We propose a
unified learning framework to validate the feasibility and to
find diverse inverse mapping solutions. We train the models
from a dataset generated from robot motor babbling in
simulation which the robot explores its configuration space
densely within its kinematic capability. As a result, the
trained models can compute kinematic reachability of a target
pose, and its inverse solutions without iterative computation.
The contribution of the paper is in five folds:

• A unified learning framework to validate kinematic
feasibility and to solve inverse mapping for a planned
task space motion.

• It provides a reachability measure for a target pose in
task space without an iterative process.

• It provides diverse and accurate inverse mapping solu-
tions for a redundant manipulator.

• The approach is validated in a commercial robot plat-
form in full position and orientation so that we can
use the solution directly in various robotics tasks. Espe-
cially, we validated our approach in an object grasping
task.

• As we train the models accurately using the samples
which are generated by considering self-collision and
the joint limit for a robot, the resultant models rarely
violate self-collision and joint limit.

II. RELATED WORKS

A. Reachable space estimation

Representing a space of a robot’s feasible end-effector
postures is essential to plan the robot’s motion efficiently.
The reachable (or kinematically feasible) space depends
on the kinematic properties of the robot (e.g., degrees of
freedom (DOF), joint limits and link lengths, etc.). Hence,
the 6D reachable space spanned by the feasible positions
and orientations of a robot is highly nonlinear and varies
drastically from robot to robot.

Early investigations of this issue are based on discretized
voxel [6], [7], [8], [9]. These approaches uniformly divide the
complete reachable-space into 3D cells [6] or full 6D cells
[7]. Each of the discretized cell contains reachability values.
Indeed, such approaches provide an intuitive and accurate
measure of reachability. However, for high resolution of the
reachable space, high dimensional voxel grid is required.

The other body of approaches approximates the reachable-
space of a robot with density functions. A data-driven
probabilistic modeling approach has already been considered
to compute the 6D reachable space of a robot hand [1],
[2]. The approach uses a much more compact representation
than the grid approach. Training samples of reachable space
are acquired using motor babbling, i.e. randomly sampling
joint configurations within the joint ranges of the robot.
The resulting end-effector poses are computed from the
known forward model. The density of the reachable space
samples is modeled by the Gaussian mixture model (GMM).
A specific end-effector pose is considered reachable if its
reachability (measured as the probability density of the
model) is larger than a threshold. High reachability correlates
to many available inverse kinematics solutions and to a wide
range of null-space (in case of a redundant manipulator).
However, these approaches didn’t consider self-collision nor
redundant null space density.

B. Density estimation

One of the common approaches for density approximation
from samples is Kernel Density Estimation, a non-parametric
method to estimate probabilities for new points [10]. It has a
very intuitive and simple structure to use, however, requires a
large number of representative kernels to represent complex
density distribution accurately.

Another category of the approach is Energy based model
(EBM) [11][12][13]. It learns an energy function by assign-
ing low energies to the observed data and high energies to the
others. Thus, it can estimate multi-modal and complex den-
sity distributions of the data explicitly. The energy function
is defined as a scalar function which is often parameterized
by a neural network. The parameters of the energy function
are generally learned via maximum likelihood estimation or
minimizing the Kullback-Leibler (KL) divergence between
the training samples and the trained model.

The other category of the approach is based on autore-
gressive flow (AF) [14][15][16][17]. AF uses autoregressive
models as a form normalizing flow [18]. It transforms a

standard normal distribution into a more complex distribution
by the composition of invertible and differentiable functions
[14]. The joint density p(ξ) of a multivariate random variable
ξ can be represented as a product of univariate conditional
densities as p(ξ) = p(ξ1)

∏
i=2 p(ξi|ξ1:i−1). Autoregressive

density estimators model each conditionals p(ξi|ξ1:i−1) as a
parametric density. The model is trained to minimize the KL
divergence of the model from the observed data 1.

C. Inverse mapping for redundant manipulator

Above density estimation approaches can be applied to
estimate the density of feasible robot end-effector poses so
that the density model provides an indication of feasibility
and richness of possible solutions for a target end-effector
pose. However, in order to make a robot to perform a task
in Cartesian space, we need to find a set of values in joint
configuration space (e.g., joint position, velocity, or torque)
for the task space trajectory. Such an inverse mapping is
not a trivial problem as a redundant manipulator admits an
infinite number of solutions for the desired end-effector pose.
In addition, joint limits, self-collisions, or more constraints
(e.g., energy consumption, external obstacles, etc.) should be
considered.

One of the most commonly used approaches is based on
the robot Jacobian [19]. The inverse kinematics problem can
be formulated as a gradient descent optimization problem
using Jacobian. It intrinsically finds a solution in the closest
distance from the initial joint configuration. For a redun-
dant manipulator, null-space of the Jacobian [3] approach
is generally used. It uses redundant DOFs for other user-
defined requirements after satisfying the task constraints.
This method can be used to avoid joint limits [3], for
obstacle avoidance [20] and for prioritized tasks (the lower
priority task only in the null space of the higher-priority
task) [21]. These approaches are computationally very fast
and effective when a robot is asked to do a manipulation task
with additional constraints. However, the solutions are highly
affected by the initial joint configuration. More importantly,
these types of approaches have a high risk of falling into
local minima.

One of the recent approaches in machine learning, [22]
proposed an inverse mapping learning approach using deep
neural networks. Unlike Jacobian based approach, it provides
a direct mapping between end-effector pose x and joint
configuration values q. The aim is to approximate the inverse
mapping p(q|x) of a dataset that are sampled from a known
forward model x = f(q). For a redundant case, they employ
a latent random variable z, and approximate the inverse
mapping as q = g(x, z). The networks are trained to
minimize 1) the forward prediction loss (i.e., end-effector
pose estimation loss), 2) the backward prediction loss (i.e.,
joint configuration estimation loss) and 3) the latent variable
loss (z to be normal distribution, and to be independent to
x i.e., p(z|x) = p(z) so that the network not encode twice
the training information).

1Minimizing KL divergence is the same effect maximizing log-likelihood
of observation [16]

In this work, we employ the work of [22] for learning the
inverse mapping. We extend the work to full 6D Cartesian
space and validate it on a commercial robot manipulator. Be-
sides, we propose a unified learning framework for training
the reachability density model and inverse mapping model
jointly. Once they are learned, the networks directly provide a
joint space solution for a given robot end-effector pose, with-
out solving optimization problems recursively (e.g., Jacobian
based inverse kinematics). It is highly beneficial for long-
horizon path planning for robot manipulation. The detail will
be followed in the next Section III-B

III. METHOD

In this paper, we propose an unified framework for fea-
sibility validation of a target end-effector pose (in Section
III-B) and for solving its inverse solutions (in Section III-A).
We train the models from a dataset, {xi,qi}Ni=1, generated
using a motor babbling procedure in simulation which the
robot explores its configuration space densely within its
kinematic capability. We sample from a uniform distribution
in joint configuration space. Where x ∈ SE(3) represents
end-effector pose variable in Cartesian space 2; q ∈ RD

represents joint configuration space variable. We assume that
the kinematic properties (kinematic chain, joint limits, robot
collision shapes, etc.) of the target robot are available.

A. Learning inverse mapping with latent representation

Since we consider redundant inverse mapping problem
(i.e., one-to-many mapping or under-determined problem),
there are infinite number of solutions in configuration space
to place a robot end-effector to a feasible pose. Hence, we
propose to employ a latent representation to encode the
diversity of inverse solutions for a target end-effector pose.
We aim to find a deterministic inverse mapping function
q = I(x, z). Where z ∈ RK represents the latent space
variable.

The architecture of the proposed networks is shown in
Fig. 1. The forward network, {x, z} = F(q), estimates the
end-effector pose x and latent representation z for a given
joint configuration q. To encode the diversity of the solutions
in the latent space, the dimension of the latent variable K
should be greater than or equal to the redundant degrees of
freedom, K ≥ D − 6.

The inverse net I estimates a set of joint configurations
for a given end-effector pose x and a latent variable z. The
reachable density network D(x, z) estimate joint density for
given x and z.

The first two networks, I and F are jointly trained by
minimizing below three losses, with fixed density network
D.

• Lq(q, q̂): Joint configuration reconstruction loss
• Lc([x, ẑ], [x̄, z̄]) : End-effector pose and latent variable

reconstruction loss

2The selection of orientation representation affects to the training result
drastically because of the discontinous issue of orientation represenataion.
We use first two axes of rotation matrix used in [1] to represent orientation.

q

z

q

x

Forward Net Inverse Net
^

^

^

x-

z-

Forward Net

c

q

p(xi|xi-1)

p(x0)

p(x1|x0)

p(zi|zi-1)

p(z0|xc)

p(x)

p(x,z)

Density Net

x

x

...
...

...

Fig. 1: The architecture of the proposed network models.
The details of the forward/inverse networks and the density
network are described in Section III-A and III-B respectively.

• Lz = KL(p(z)|N (0,Σ))+KL(p(x, z)|p(x)p(z)): The
latent loss is consisted with two losses. The first one is
that the density of the latent variable z to be shaped
as a normal distribution. The other is that the mutual
information between x and z to be zero. This loss forces
x and z to be independent so that the forward model
does not encode same information twice in x and z
[22]. For the mutual information loss, we also use KL
divergence. Where p(x, z) and p(x) are computed from
the density model D that is presented in the next section
III-B.

In this paper, mean squared error (MSE) is used to
compute Lq and Lc. The total loss is computed by weighted
sum of the individual losses, L = ΣL

l=1λlLl, where λ are
corresponding weight for each of individual losses. All the
parameters that are used for training these networks are
shown in Section IV.

B. Learning reachability manifold

In this section, we present our density estimation approach
for a robot end-effector pose and latent space variable.
Among the approaches reviewed in Section II-B, we use
Block Neural Autoregressive Flows (B-NAFs) [16], as it
provides a compact and universal density approximation
model as well as outstanding performance on the density
approximation. Unlike neural autoregressive flow [23] use
conditioner network, B-NAFs train the network directly [16].

The density network D estimates the joint density for a
random variable ξ = [x, z].

p(ξ) = p(ξ1)
∏
i=2

p(ξi|ξ1:i−1) (1)

Each of the conditional densities is modeled individually
using dense networks. By employing a single masked autore-
gressive network [24], all the conditional density functions
are efficiently computed in parallel. The joint probabilities,
p(x) and p(x, z) are computed by the chain rule of proba-
bility, from the density network D as seen in Equation 1.

The model is trained by minimizing the loss function Ld =
KL(ps(x, z)|p(x, z)), KL-divergence between source distri-
bution ps(x, z) of training samples and the target distribution
p(x, z) of the density network D. Once the density model is
trained, a given pose x or [x, z] are said to be feasible when
the density p(x) or p(x, z) exceeds the reachable density
thresholds, ρx and ρc respectively. In addition, high density
indicates the richness of its mappings to joint configuration
space for the end-effector pose.

The overview training procedure are described in below
algorithm.

Algorithm 1: Training procedure

Data: {xi,qi}Ni=1 from motor babbling
while numer of epoch do

// train forward and inverse networks
(, ẑ) = F(q)
q̂ = I(x, ẑ)
(x̄, z̄) = F(q̂)
compute p(x), p(x, ẑ) from D
compute losses Lq , Lc and Lz

optimizer step for F and I
// train density network
(, ẑ) = F(q)
compute loss Ld

optimizer step for D
end

IV. EXPERIMENTAL VALIDATION

We first demonstrate the capability of the proposed frame-
work on a commercial robot manipulator, Panda from Franka
Emika company3, in Section IV-A. In addition, we demon-
strate a typical application of object-grasping task, selecting
a kinematically feasible grasp pose among diverse candidates
(in Section IV-B).

A. Reachable-space and Inverse mapping of a robot manip-
ulator

a) Training and validation dataset generation: Train-
ing samples {xi,qi}Ni=0 are acquired using motor babbling
by randomly sampling in a uniform distribution of joint
configuration space within the joint ranges of the robot.
The resulting end-effector poses x are computed from the
known forward kinematics. In addition to that, we also check
self-collision [25] and discard the self-collided samples from
the data-set. Total 1e8 samples are generated and randomly
selected 80% is used for training and others are used for
testing.

3https://www.franka.de/

For the validation dataset, we generate kinematically
infeasible samples as well. Generating infeasible samples
requires a more complicated process than the feasible sample
generation, as the samples should be validated analytically
or probabilistically. A pose in SE(3) is randomly selected
within the limited position envelope (1.5<x, y, and z <1.5
unit: m); an orientation is randomly selected but without
any restrictions. Note that sampling space should include the
whole reachable space of the robot with some margin. Each
pose is tested by solving the inverse kinematics to validate
its feasibility. A general Jacobian-based IK solver based on
Newton-Raphson iterations [26] is used. As the initial choice
of joint angles affects the solution, for each target pose, 200
different initial joint angles are chosen randomly within the
joint ranges of the robot. We set the maximum iterations for
the IK at 200. If all IK attempts are failed within the iteration
limit, the pose is considered as negative, otherwise positive.
Total 1e5 samples were generated, and 6.8% were fell into
feasible and the rest 93.2% were fell into infeasible. As we
consider full range of orientation for the end-effector, the
feasible sample ratio in SE(3) is very small.

b) Network architecture details and training: For the
forward F and inverse I models, we use a fully connected
neural network with 6 and 9 layers respectively. The dimen-
sions of all the hidden layers are set to 500. The density
model D consists of 4 layers with 66 hidden dimensions.
The models are trained with Adam optimizer using learning
rates of 0.0001 for F and I networks, and 0.005 for D. The
parameters have been validated through cross-validation.

For the joint configuration reconstruction loss Lq(q, q̂)
and the end-effector pose and latent variable reconstruction
loss Lc([x, ẑ], [x̄, z̄]), we simply use MSE. Batch size is set
as 1e5.

c) Result: Figure 3 shows loss curves which are com-
puted from the testing and validation sets. The reachable
density threshold ρx is selected 99% of training samples to
be above the threshold at every epoch. The threshold is used
at the next epoch to compute the true positive rate (TPR)
and true negative rate (TNR). After the training is finished,
we got TPR and TNR as 0.99 and 0.95 respectively. As the
reachable density model is too high dimensional to display
the resultant density in 2D or 3D, we show a few examples in
2D (x-y plane) by fixing the other values arbitrary in Figure
4. We see that different orientation constraints highly affect
the reachable space in the x-y position plane.

Figure 2 shows the diverse solutions for a given target end-
effector pose. The middle of the figure shows the probability
density p(x, z) in latent space for a given end-effector pose.
Seven arbitrary latent values (which the reachability score
is higher than the threshold) are selected, and their joint
configurations are directly computed from the inverse net I.
We see that the inverse net with latent representation provides
diverse inverse solutions.

To check if the resultant inverse mapping solutions from
I contain self-colliding samples, we evaluate the inverse
solutions of the testing set using the FCL library [25]. As a
result, 99.7 % were safe from the self-collision.

− 1.00 − 0.75 − 0.50 − 0.25 0.00 0.25 0.50 0.75 1.00

z_1

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

z
_
2

0

1

2

3

4

5

6

7

Fig. 2: Probability density p(x, z) plot on latent space in log scale. An end-effector pose in the testing set is set as the
target pose: position (0.200, 0.58, 0.77) and orientation (−0.30,−0.30,−0.63, 0.65) in scalar-last format of unit Quaternion.
Seven latent variables are tested with the trained inverse net. The resultant joint configurations are displayed with the Panda
robot. The inverse network generates diverse solutions in joint configuration space for the target end-effector pose.

0 20 40 60 80 100
Epoch

0.1

0.0

0.1

0.2

0.3

0.4

Lo
ss

 (M
SE

)

Supervised reconstruction losses, c and q

c :position
c :orientation
c :latent
q

0 20 40 60 80 100
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ss

Latent loss: z

0 20 40 60 80 100
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

Ra
tio

TNR/TPR ratio for validation set

TNR
TPR

0 20 40 60 80 100
Epoch

20

0

20

40

Lo
ss

KL divergence loss for density model: d

Fig. 3: The loss curves during the training. The supervised
losses Lq and Lc (left top), latent loss Lz (right top) and
density loss Ld (right bottom) are computed from the testing
set for each epoch. The figure in left bottom shows the
density model accuracy curve (TPR and TNR) which is
computed from the validation set.

Indeed, the inverse mapping solutions still include some
errors in Cartesian space 4 although they are small. For a task
that requires high-resolution, we add a refinement process
on the resultant inverse mapping solution. The refinement
process includes one or two iterations of Jacobian based IK
approach. Initial and rest joint configurations are set with
the output of the inverse network. As we see in Figure 5,
the refinement process helps to reduce the remaining end-

4The Cartesisan space pose for the resultant inverse solution is computed
by using the true forward kinematics, and it is compared with the one in
the testing set.

− 1.0 − 0.5 0.0 0.5 1.0

x (m)

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

y
 (

m
)

400

500

600

700

800

900

1000

− 1.0 − 0.5 0.0 0.5 1.0

x (m)

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

y
 (

m
)

(a) (b)

Fig. 4: Reachable density p(x) on x-y plane with
different orientations, (a) [0.707, 0.0, 0.707, 0.0] and (b)
[0.707, 0.707, 0.0, 0.0] in scalar last format of unit quater-
nion. Z is fixed as z = 0.01. Two examples of inverse
solution are displayed with colored axis (red: x axis, green:
y axis and blue: z axis of rotation matrix).

effector pose error.
The online computation time for an inverse mapping of the

method is 0.51±0.17 ms for a single query and 2.30±0.50
ms for a batch of 512 samples 5. Indeed, it is not directly
comparable with other approaches (e.g. TRAC-IK [27]), as
ours get benefits from GPU, but most of the other approaches
are implemented to use CPU. However, obviously ours is
highly beneficial for robot-learning applications that are
implemented to use GPUs.

5The computation is performed on Nvidia Quadro P1000

Inverse net 1 step 2 steps
0.00

0.05

0.10

0.15

er
ro

r (
l2

 n
or

m
) position (m)

orientation (rad)

Fig. 5: Refinement process result. One and two iterations of
Jacobian based IK is applied, by setting the initial and rest
joint configurations as the output of trained inverse network.

B. Grasping pose estimation

Generating a successful grasping pose is an essential
but crucial component for robot object manipulation tasks.
Numerous approaches have been proposed in this domain
[28][29][30]. However, most of them are focused on finding
diverse robot hand poses with respect to the object coordinate
system. Deciding to select an optimal grasping configuration
among them highly depends on the target task and kinematic
feasibility for a target robot. Indeed, the kinematic feasibility
validation is an essential process for successful grasping,
and a conventional way such as diverse trial of IK for
different initial configurations (that are used for validation
dataset generation in Section IV-A) might be an option.
However, as we discussed in Section III-A, it is a time-
consuming process and has a risk of falling on a local optima.
In contrast, our presented approach directly provides the
kinematic feasibility and corresponding joint configurations
together without iterative process.

Among the different approaches for generating diverse
grasping candidates w.r.t. the object coordinate system, we
use 6-DOF Graspnet [28], as it provides diverse grasping
gripper candidates, and its performance (success rate for
picking up objects) is with state-of-the-art performances.
In this experiment, we use one of the objects (see Figure
6), pre-trained model and implementation from [28][31]. As
investigating and reviewing diverse approaches for grasping
pose estimation is out of scope of this paper, we invite the
reader to refer to the mentioned papers for exhaustive details
about the approach.

Figure 6 shows the kinematic feasibility validation and
direct inverse mapping result of our presented approach.
Among the diverse grasping poses for the object produced
by 6-DOF Graspnet, we select 10 best grasping candidates
only for good visualization. Our density model D evaluates
the candidates in terms of kinematic feasibility, and the
inverse model I generates robot joint configurations for
the gripper poses (latent variable are set as [0, 0]). As we
see in the figure, the density net D directly discards the
grasp configurations which are kinematically infeasible for
the robot manipulator. Also, our approach directly generates
joint configuration for the gripper pose.

V. DISCUSSION AND CONCLUSION

In this paper, we presented a unified learning framework
to validate the feasibility of a desired end-effector pose and
to compute its diverse inverse mapping solutions, which are

(1)

(2)

(4)

(8)

(a) Object position : (0.8, 0.0, 0.0)

(5) (6)

(7)
(9)

(b) Object position : (-0.8, 0.0, 0.0)

Fig. 6: Depend on the pose of the object w.r.t. the robot base
coordinate system, the feasibilities for the grasping candi-
dates are varied drastically (green: feasible, gray: invisible).
The presented approach accurately and efficiently filters out
the kinematically infeasible candidates (left), and provides
joint configurations without iterative process (right). The
numbers near the gripper represent the ids of the grasping
candidates.

essential elements for robot arm path planning. Emphasis
is placed on the presented approach directly providing the
kinematic feasibility and diverse inverse solutions for a given
task space target without iterative process in the execution
stage.

Compared to the iterative gradient based approach for
solving inverse kinematics, the presented approach provides
a kinematic feasibility and its inverse solutions without itera-
tive optimization. Hence the presented approach is computa-
tionally very efficient and it can reduce the risk of falling in a
local minima. In addition, our models are accurately trained
using the samples which are generated by considering self-
collision. We show that the resultant models rarely violate
self-collision.

The presented latent representation is conceptually similar
to the null-space motion of Jacobian in the classic Inverse
kinematics in robotics. However, the presented approach has
minimum representation in the latent space, and directly
provides a joint position space solution rather than the local
velocity space.

As we see in Figure 5, the inverse mapping solutions still
include some errors although they are very small. For a task
that requires high accuracy, an additional refinement process
(in Section IV-A) can be applied optionally to remove the
remaining end-effector pose error.

In the future work, we are going to apply the presented
framework to high-level policy learning and reinforcement
learning tasks to reduce the search space for an action
policy by efficiently discarding the infeasible action space in
advance. Finally, we plan to extend the latent representation
to encode useful information for robot manipulation, such as
manipulability [32].

REFERENCES

[1] S. Kim, A. Shukla, and A. Billard, “Catching Objects in Flight,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1049–1065, 2014.

[2] S. Kim, R. Haschke, and H. Ritter, “Gaussian Mixture Model for 3-
DoF orientations,” Robotics and Autonomous Systems, vol. 87, pp.
28–37, Jan. 2017.

[3] A. Liegeois, “Automatic Supervisory Control of the Configuration and
Behavior of Multibody Mechanisms,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 7, no. 12, pp. 868–871, 1977.

[4] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in IROS, vol. 1. IEEE, 2001, pp. 298–303.

[5] M. Rolf, J. J. Steil, and M. Gienger, “Goal babbling permits direct
learning of inverse kinematics,” IEEE Transactions on Autonomous
Mental Development, vol. 2, no. 3, pp. 216–229, 2010.

[6] F. Zacharias, C. Borst, and G. Hirzinger, “Object-Specific Grasp Maps
for Use in Planning Manipulation Actions,” in Advances in Robotics
Research. Springer Berlin Heidelberg, 2009, pp. 203–213.

[7] F. Zacharias, C. Borst, S. Wolf, and G. Hirzinger, “The Capability
Map: A Tool to Analyze Robot Arm Workspaces,” International
Journal of Humanoid Robotics, vol. 10, no. 04, p. 1350031, Dec.
2013.

[8] O. Porges, R. Lampariello, J. Artigas, A. Wedler, C. Borst, and M. A.
Roa, “Reachability and Dexterity: Analysis and Applications for Space
Robotics,” in Workshop on Advanced Space Technologies for Robotics
and Automation (ASTRA), 2015, p. 7.

[9] N. Vahrenkamp, H. Arnst, M. Wachter, D. Schiebener, P. Sotiropoulos,
M. Kowalik, and T. Asfour, “Workspace analysis for planning human-
robot interaction tasks,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids). Cancun, Mexico: IEEE, 2016, pp.
1298–1303.

[10] S. Kim, A. Coninx, and S. Doncieux, “From exploration to control:
learning object manipulation skills through novelty search and local
adaptation,” Robotics and Autonomous Systems, vol. 136, 2021.

[11] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. J. Huang, “A
Tutorial on Energy-Based Learning,” in Predicting Structured Data,
2006.

[12] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu, “A Theory of Generative
ConvNet,” in ICML, 2016.

[13] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based Generative
Adversarial Network,” in ICLR, 2017.

[14] I. Kobyzev, S. J. D. Prince, and M. A. Brubaker, “Normalizing
Flows: An Introduction and Review of Current Methods,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

[15] G. Papamakarios, “Neural Density Estimation and Likelihood-free
Inference,” arXiv:1910.13233 [cs, stat], Oct. 2019.

[16] N. De Cao, I. Titov, and W. Aziz, “Block Neural Autoregressive
Flow,” in Uncertainty in Artificial Intelligence, 2019.

[17] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever,
and M. Welling, “Improved Variational Inference with Inverse
Autoregressive Flow,” in Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 4743–4751.

[18] D. J. Rezende and S. Mohamed, “Variational Inference with
Normalizing Flows,” in ICML, 2016.

[19] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, 2017.

[20] N. Yoshihiko, Advanced Robotics: Redundancy and Optimization.
Addison-Wesley Publishing Company, 1991.

[21] N. Yoshihiko, H. Hideo, and Y. Tsuneo, “Task-Priority Based
Redundancy Control of Robot Manipulators,” The International
Journal of Robotics Research, vol. 6, no. 2, pp. 3–15, 1987.

[22] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S.
Klessen, L. Maier-Hein, C. Rother, and U. Köthe, “Analyzing Inverse
Problems with Invertible Neural Networks,” in ICLR, 2019.

[23] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville, “Neural
Autoregressive Flows,” in International Conference on Machine
Learning, 2018.

[24] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “MADE:
Masked Autoencoder for Distribution Estimation,” in ICML, 2015, pp.
881–889.

[25] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in ICRA, 2012, pp. 3859–3866.

[26] A. Goldenberg, B. Benhabib, and R. Fenton, “A complete generalized
solution to the inverse kinematics of robots,” IEEE Journal on Robotics
and Automation, vol. 1, no. 1, pp. 14–20, 1985.

[27] P. Beeson and B. Ames, “TRAC-IK: An open-source library for
improved solving of generic inverse kinematics,” in IEEE-RAS In-
ternational Conference on Humanoid Robots. Seoul, South Korea:
IEEE, Nov. 2015, pp. 928–935.

[28] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational
Grasp Generation for Object Manipulation,” in ICCV, 2019.

[29] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “GraspNet-1Billion: A
Large-Scale Benchmark for General Object Grasping,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Seattle,
WA, USA: IEEE, June 2020, pp. 11 441–11 450.

[30] L. Pinto and A. Gupta, “Supersizing Self-supervision: Learning to
Grasp from 50K Tries and 700 Robot Hours,” ICRA, 2016.

[31] J. Lundell, “6-DOF GraspNet Pytorch,”
https://github.com/jsll/pytorch 6dof-graspnet, 2020.

[32] N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon, “Geometry-aware
manipulability learning, tracking, and transfer,” The International
Journal of Robotics Research, Aug. 2020.

