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Abstract

Curriculum learning is a technique to improve a model performance and general-
ization based on the idea that easy samples should be presented before difficult
ones during training. While it is generally complex to estimate a priori the diffi-
culty of a given sample, recent works have shown that curriculum learning can be
formulated dynamically in a self-supervised manner. The key idea is to somehow
estimate the importance (or weight) of each sample directly during training based
on the observation that easy and hard samples behave differently and can therefore
be separated. However, these approaches are usually limited to a specific task
(e.g., classification) and require extra data annotations, layers or parameters as
well as a dedicated training procedure. We propose instead a simple and generic
method that can be applied to a variety of losses and tasks without any change
in the learning procedure. It consists in appending a novel loss function on fop
of any existing task loss, hence its name: the SuperLoss. Its main effect is to
automatically downweight the contribution of samples with a large loss, i.e. hard
samples, effectively mimicking the core principle of curriculum learning. As a side
effect, we show that our loss prevents the memorization of noisy samples, making it
possible to train from noisy data even with non-robust loss functions. Experimental
results on image classification, regression, object detection and image retrieval
demonstrate consistent gain, particularly in the presence of noise.

1 Introduction

Curriculum learning (CL) [4]], a paradigm inspired by the learning process of humans and animals,
has recently received a sustained attention [[13} 18} 48} 155]]. CL is based on the intuitive observation
that our learning process naturally starts from easy notions before gradually transitioning to more
complex ones. When applied to machine learning, it essentially boils down to designing a sampling
strategy, i.e. a curriculum, that would present easy samples to the model before harder ones [[13}22].
While this was shown to be effective at improving the model performance and its generalization power
in earlier works [4} 22], they were limited to toy datasets and engineered sampling heuristics, leaving
unaddressed the general problem of establishing a curriculum on real-world tasks and datasets.

For this reason, a growing line of research has focused on methods able to automatically determine
the curriculum without requiring prior knowledge about the task at hand [18, 25| 34 |44 148 49].
This is indeed possible as easy and hard samples behave differently during training in terms of
their respective loss, allowing them to be somehow discriminated [19, |34} 44]. In this context, CL
is accomplished by predicting the easiness of each sample at each training iteration in the form
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Figure 1: Top-left: The classical supervised training. Bottom-left: Our approach consists in appending
our SuperLoss on top of any existing loss, without changing anything else in the training procedure.
Back-propagation now starts from the SuperLoss. Right: At test time, no change is required.

of a weight, such that easy samples receive larger weights during the early stages of training and
conversely. Another benefit of this type of approach, aside from improving the model generalization,
is their resistance to noise. This is due to the fact that noisy samples (i.e. with wrong labels) tend to
be harder for the model and thus receive smaller weights throughout training [[18] 144} 48], effectively
discarding them. This side effect makes these methods especially attractive when clean annotated
data are expensive while noisy data are widely available and cheap [2, 20} 31} 136} [52]]. Existing
approaches for automatic CL nevertheless suffer from two important drawbacks that drastically
limit their applicability. First, current methods like [6} [18} (19} 28] 48| [55]] overwhelmingly focus
and specialize on the classification task, even though the principles mentioned above are general
and can potentially apply to other tasks. Second, they all require important changes in the training
procedure, often requiring dedicated training schemes [[1} 6} |8, [16, 28} 55]], involving multi-stage
training with or without special warm-up periods [13} 18} 19,123} 39, |60], extra learnable parameters
and layers [6, [18 29| 148160, [67] or a clean subset of data [[18} 27, 144].

In this paper, we propose instead a simple yet generic approach to dynamic curriculum learning. It is
inspired by recent confidence-aware loss functions that yield the capability to jointly learn network
parameters and sample weights, or confidences, in a unified framework [38] 146, 48]]. As a first
contribution, we introduce a novel type of confidence-aware loss function that can transform any task
loss into a confidence-aware version. Thanks to an automatic and optimal confidence-setting scheme,
it can scale-up to any number of samples and requires no modification of the learning procedure
except the insertion of a new loss termed SuperLoss, making it broadly applicable. As shown in
Figure[I] the SuperLoss is simply plugged on fop of the original task loss during training, hence its
name. Its role is to monitor the loss of each sample during training and to determine the sample
contribution dynamically by applying the core principle of curriculum learning. To the best of our
knowledge, this is the first time that a task-agnostic approach for curriculum learning without any
change in the training procedure is proposed. As a second contribution, we present how the SuperLoss
can be applied to various tasks: image classification, deep regression, object detection and image
retrieval. As a third contribution, we present empirical evidence that our approach leads to consistent
gains when applied on clean and noisy datasets. In particular, we observe large gains in the case of
training from noisy data, a typical case for large-scale datasets automatically collected from the web.

2 SuperLoss

We first present a family of specialized loss functions that we denote as confidence-aware and
which are closely related to CL (Section[2.T). We then derive a generic task-agnostic formulation in
Section|2.2|and show how this formulation can be further simplified in the context of CL, yielding
the SuperLoss (Section[2.3). Finally, we illustrate in Section[2.4] several applications of our approach.

2.1 Confidence-aware loss

A novel type of loss functions, which we denote as confidence-aware, has been recently and in-
dependently proposed by several authors for a variety of tasks and backgrounds [21} 38}, 46-48]].
Consider a dataset {(x;,;)}Y,, where sample x; has label y;, and let f(-) be a trainable predictor
to be optimized using empirical risk minimization. In contrast to traditional loss functions of the
form £(f(x;),y:), a confidence-aware loss function ¢(f(x;), y;, ;) takes an additional learnable
parameter o; > 0 as input. Such a parameter is associated with each sample x; and represents the
confidence or reliability of the corresponding prediction f(a;).
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Figure 2: Overall shape of various confidence-aware losses that learn the confidence, with from left
to right: confidence-aware cross-entropy [48]], reliability loss [46]], introspection loss [38]], and our
proposed SuperLoss. Each plot shows the resulting loss according to the ‘correctness’ of a particular
prediction (y-axis) and the corresponding confidence (x-axis). Blue is smaller and yellow is larger.

The goal of a confidence-aware loss is to handle difficult samples without resorting to heuristics such
as using robust versions of the loss, by instead modulating the loss amplitude w.r.z. the confidence
parameter [38]. We plot several existing confidence-aware loss functions in Figure 2] where the
sample confidence o; is represented on the x-axis and a quantity measuring the correctness of the
network prediction is represented on the y-axis. Interestingly, these losses have practically identical
shapes despite the fact that they have been proposed independently for different tasks (e.g., patch
matching [46], keypoint detection [38]], dynamic CL [48]) and have seemingly unrelated formula
(see Supplementary). Regardless of the manner the confidence intervenes in the loss formula, a
key property that they noticeably share is that the gradient of the loss w.rt. the network parameters
monotonously increases with the confidence, all other parameters staying fixed. Simply put, the
left-hand side of the plots (low-confidence area of the loss) is flatter than the right-hand side (high-
confidence area). As a consequence, gradient updates towards the model parameters are smaller for
samples with lower confidence, which practically amounts to down-weight low-confidence samples
during training.

This property makes confidence-aware losses particularly well suited to dynamic CL, as it allows to
learn the confidence, i.e. weight, of each sample automatically through back-propagation and without
further modification of the learning procedure. This principle was recently implemented by Saxena
et al. [48] for the classification task with a modified confidence-aware cross-entropy loss. As a result,
jointly minimizing the network parameters and the confidence parameters, named data parameters
in [48]), via standard stochastic gradient descent leads to accurately estimate the reliability of each
prediction, i.e. the difficulty of each sample, via the confidence parameter.

2.2 A task-agnostic confidence-aware loss function

While the closely-related principles behind dynamic CL and confidence-aware losses appears to be
completely generic, we surprisingly find that none of the existing confidence-aware formulations
easily generalize to other tasks. For instance, the introspection loss [38] is designed for the retrieval
task; the modified cross-entropy from [48] specializes in the classification task; the multi-task
loss [21]] only handles regression and cross-entropy; etc. We refer to the Supplementary material for
more details.

In this work, we propose instead a novel and task-agnostic type of confidence-aware loss function. In
contrast to existing confidence-aware losses, it only takes two inputs, namely, the task loss £( f (x;), y;)
(simplified as ¢; and referred to as input loss in the following) and a confidence parameter o;. We
denote this function as Ly (¢;, 0;), where A > 0 is a regularization hyper-parameter. Even though
some confidence-aware losses are built from probabilistic considerations [211, 38, 147]], we find it hard
to derive a probabilistic framework that would suit all possible types of loss functions. Instead, we
consider generic principles and identify three properties that L (¢;, ;) needs to satisfy:

1. Translation-invariance. Adding a constant to the input loss should have no effect on Ly’s
gradient, i.e. VK, 3K’ | Ly(¢; + K,0;) = K’ + Lx(4;,0;), where K and K’ are constant.

2. Homogeneity. L), should have a multiplicative scaling behavior: I\ N | VK >
0, La(KY{;,0;) = K Ly (¢;,0;), where K is a constant. This way we can handle in-
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Figure 3: Left: We plot on top the typical losses incurred by an easy (green) and a hard (red)
sample during training. At bottom, we show (a) their respective confidence when learned via back-
propagation using Ly (¢;, 0;) (dotted lines) and (b) their optimal confidence o7 (¢;) (plain lines). In
contrast to using the optimal confidence, learning it induces a significant delay between the moment
a sample becomes easy (its loss passes under 7) and the moment its confidence becomes greater than
1. Right: we show SL) (¢;) as a function of ¢; — 7 for different A. The SuperLoss emphasizes the
input loss when ¢; < 7, and reduces it in the opposite case, thus limiting the impact of hard samples.

put losses of any amplitude, i.e. we just need to accordingly rescale the learning rate and
A

3. Generalization, in the sense that L) (¢;, o;) should amount to the input loss for a particular
confidence o, i.e. 30 | Lx(¢;,0) = £; + K, where K is a constant.

Optionally, a convenient aspect is that it should be easily interpretable.

We now propose one of the simplest possible formulation that meets all these criteria, including the
interpretability. Similarly to the confidence-aware cross-entropy proposed in [48]], it is composed of a
loss-amplifying term and a regularization term controlled by the hyper-parameter A > 0:

Ly(ti,00) = (6; — ) 05 + A (log ;)% , (1)

where 7 is a threshold that ideally separates easy samples from hard samples based on their respective
loss. In practice, T is empirically estimated as a running average of the input loss during training,
thereby trivially satisfying translation-invariance (property 1). Note that a similar thresholding
involving extra learnable layers and parameters was proposed to separate easy and hard samples in
MentorNet [[18]. In certain cases, 7 can also be set as a constant based on prior knowledge on the task
loss, but our results suggest that this makes almost no difference compared to using a running average
(see Section[3). As for the other properties, homogeneity (property 2) is verified with A = K\’
and generalization (property 3) is achieved for o; = 1 as L (¢;,1) = ¢; — 7. We plot the shape of
Ly(¢;,0;)in Figure(right): its shape is similar to other specialized confidence-aware losses.

2.3 Optimal confidence and SuperLoss

While Saxena er al. [48] have shown the benefits of learning the confidence of each sample dy-
namically via back-propagation, this has several shortcomings. First, it requires one extra learnable
parameter o; per sample, which does not scale for tasks like detection or retrieval where the number
of samples can be almost infinite (Section[2.4). Second, learning the confidence naturally induces a
delay (i.e. the time of convergence), and thus potential inconsistencies between the true status of a
sample and its respective confidence, see Figure 3] (left). Third, it adds several hyper-parameters on
top of the baseline approach such as the learning rate and weight decay of the secondary optimizer.

Instead of waiting for the confidence parameters to converge, we therefore propose to directly use
their converged value at the limit, which only depends on the input loss /;:

o\(¢;) = argmin Ly (¢;, 03). ()
As a consequence, the confidence parameters do not need to be learned and are up-to-date with the

sample status. The new loss function that we obtain takes a single parameter as input and can therefore
simply be appended on top of any given task loss (see Figure 1), hence its name of SuperLoss (SL):

SL,\(&) :L)\ (EZ,UK(&)) :mlnL)\ (&,O’Z) (3)



As we demonstrate in Section 2.1 of the Supplementary, the optimal confidence o (¢;) from Eq. (2)
has a closed-form solution. In practice, we cap the loss to avoid infinite values as follows:
1 2 E’L -

o (l) = e W(Emax(=2.8))  with g = S . )
where W stands for the Lambert W function. During back-propagation, 7 and ¢ (¢;) are computed
from the input loss ¢; and then treated as constant. We plot our SuperLoss in Figure 3] (right) as a
function of the input loss for various A. As intended, it amplifies the contribution of easy samples
(i.e. when ¢; < 7) while strongly flattening the input loss for hard ones. We show in Section 2.2 of
the Supplementary that when the regularization parameter A tends to infinity, the optimal confidence
tends to 1, and thus the SuperLoss amounts to the input loss: limy_,c SLy(¢;) = £; — 7.

2.4 Applications

We now present concrete application cases of the SuperLoss for various tasks.

Classification. We straightforwardly plug the Cross-Entropy loss (/“¥) into the SuperLoss:
SLY®(z;,y;) == SL ((“F(f(xi),y:)). When specified, we use a fixed threshold for 7 = log C
(where C' is the number of classes) as it represents the cross-entropy of a uniform distribution and
hence appears to be a natural boundary between correct and incorrect predictions.

Regression. Likewise, we can plug a regression loss 79 such as the smooth-L1 loss (smooth-/¢;)
or the Mean-Square-Error (MSE) loss (¢3) into the SuperLoss. Note that the range of values for a
regression loss drastically differs from the one of the CE loss, but as we pointed out previously, this
is not an issue for the SuperLoss thanks to its homogeneity property.

Object Detection. We apply the SuperLoss on the box classification component of two object
detection frameworks: Faster R-CNN [45]] and RetinaNet [33]]. Faster R-CNN classification loss is a
standard cross-entropy loss /¥ on which we plug our SuperLoss SLYE . RetinaNet classification
loss is a class-balanced focal loss (FL): £¥*(p,y) = —a,, (1 — p,)"log(p,) with p the probabilities
predicted by the network for each box obtained with a softmax on the logits z = f(x),y > 0a
focusing hyper-parameter and «, a class-balancing hyper-parameter. We point out that, in contrast to
classification, object detection typically deals with an enormous number of negative detections, for
which it is infeasible to store or learn individual confidences. In contrast to approaches that learn a
separate weight per sample like [48]], our method estimates the confidence of positive and negative
detections on the fly from their individual loss.

Retrieval/metric learning. We apply our SuperLoss to image retrieval using the contrastive
loss [14], which was shown to be one of the most effective losses for metric learning [37].
In this case, the training set {(w;,®;,¥:;)}, ; is composed of pairs of samples labeled either
positively (y;; = 1) or negatively (y;; = 0). The goal is then to learn a latent representa-
tion where positive pairs lie close whereas negative pairs are far apart. The contrastive loss
is composed of two losses: (§L(f(x;), f(z;)) = [||f(z;) — f(z;)|]]+ for positive pairs and
(CL(f(x;), f(x)) = [m — ||f(z:) — f(z;)|]]+ for negative pairs where m > 0 is a margin (we
assume a null margin for positive pairs as is common [43]] and [ . |, denotes the positive component).
We apply the SuperLoss on top of each of the two losses, i.e. with two independent thresholds 7 and
7_, but still sharing the same regularization parameter A for simplicity:

CL [ SLy (6GE(f(25), f(=y))) ify; =1,
SLA (f($z>7f(w47)7yz]) {SL)\ (ESL(f(ml),f(CC])» ifyij = 0.
The same strategy can be applied to other metric learning losses such as the triplet loss [56]. As for
object detection, we note that other approaches that explicitly learn or estimate the importance of
each sample cannot be applied to metric learning because (a) the number of potential pairs or triplets
is enormous, making intractable to store their confidence in memory; and (b) only a small fraction of
them is seen at each epoch, which prevents the accumulation of enough evidence.

®)

3 Experimental results

After describing our experimental protocol in Section we evaluate the SuperLoss for regression
(Section [3.2)), image classification (Section [3.3), object detection (Section [3.4) and image retrieval
(Section each time in clean and noisy conditions.
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Figure 4: Performance (MAE) on digit regression and human age regression as a function of noise
proportion, for a robust loss (smooth-¢;) and a non-robust loss (¢5).

3.1 Experimental protocol

We refer to the model trained with the original task loss as the baseline. Our protocol is to first train
the baseline and tune its hyper-parameters (e.g., learning rate, weight decay, etc.) using held-out
validation for each noise level. For a fair comparison between the baseline and the SuperLoss, we
train the model with the SuperLoss using the same hyper-parameters. Unlike most existing works
(e.g., [6]), we do not need special warm-up periods or other tricks. Hyper-parameters specific to the
SuperLoss (regularization A and loss threshold 7) are either fixed or tuned using held-out validation
or cross-validation. More specifically, we experiment with three options for 7: (1) a global average of
the loss so far, denoted as ‘Avg’; (2) an exponential running average with a fixed smoothing parameter
a = 0.9, denoted as ‘ExpAvg’; or (3) a fixed value given by prior knowledge on the task at hand.
Similar to SELF [6], we smooth the input loss ¢; individually for each sample using exponential
averaging with o/ = 0.9, as it makes the training more stable. This strategy is only applicable for
limited size datasets; for metric learning or object detection, we do not use it.

3.2 Regression

We first evaluate our SuperLoss on digit regression on MNIST and human age regression on UTKFace,
with both a robust loss (smooth-£;) and a non-robust one (¢5), and with different noise levels.

Digit regression. We perform a toy regression experiment on MNIST [26] by considering the original
digit classification problem as a regression problem. Specifically, we set the output dimension of
LeNet [26] to 1 instead of 10 and train it using a regression loss for 20 epochs using SGD (Stochastic
Gradient Descent). We cross-validate the hyper-parameters of the baseline for each loss and noise
level. Typically, {2 prefers a lower learning rate compared to smooth-¢;. For the SuperLoss, we
experiment with a fixed threshold 7 = 0.5 as it is the acceptable bound for regressing the right integer.

Age regression. We experiment on the larger UTKFace dataset [[70] which consists of 23,705 aligned
and cropped face images, randomly split into 90% for training and 10% for testing. Races, genders
and ages (between 1 to 116 years old) widely vary and are represented in imbalanced proportions,
making the age regression task challenging. We use a ResNet-18 model (with a single output)
initialized on ImageNet as predictor and train for 100 epochs using SGD. Likewise, we cross-validate
the hyper-parameters for each loss and noise level. Because it is not clear which fixed threshold
would be optimal for this task, we do not use a fixed threshold in the SuperLoss.

Results. To evaluate the impact of noise when training, we generate it artificially using a uniform
distribution between 1 and 10 for digits and between 1 and 116 for ages. We report the mean absolute
error (MAE) aggregated over 5 runs for both datasets and both losses with varying noise proportions
in Figure [ Models trained using the SuperLoss consistently outperform the baseline by a significant
margin, regardless of the noise level or the 7 threshold. This is particularly true when the network is
trained with a non-robust loss (¢3), suggesting that the SuperL.oss makes a non-robust loss more robust.
Even when the baseline is trained using a robust loss (smooth-¢1 ), the SuperLoss still significantly
reduces the error (e.g., from 17.56 + 0.33 to 13.09 £ 0.05 on UTKFace at 80% noise). Note that
the two losses have drastically different ranges of amplitudes depending on the task (e.g., /o for age
regression typically ranges in [0, 10000] while smooth-¢; for digit regression ranges in [0, 10]).



(scaled) Confidence o
o -
wn =)

o
<}

CIFAR-100 with 40% noise N CIFAR-100 with 60% noise
- 8 1.0 =
1 S 1
I ] U
/ = 1
1 c 1
- §o0s -/ J
N - . ES) Snm _——’/
oo oo 2 R T PP P T T T T T e C e s rrr e e e T T T T T T
. : — — 3 0.0 . r ; .
0 20 40 60 g0 < 20 40 60 80
Epoch Epoch

—— Easy samples
—=—- Hard samples
Noisy samples
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3.3 Image classification

We next evaluate our SuperLoss for the image classification task on CIFAR-10, CIFAR-100 and
Web Vision.

CIFAR-10 and CIFAR-100 [24] consist of 50K training and 10K test images belonging to C' = 10
and C' = 100 classes respectively. We train a WideResNet-28-10 model [63] with the SuperLoss,
strictly following the experimental settings and protocol from Saxena et al. [48] for comparison
purpose. We set the regularization parameter to A = 1 for CIFAR-10 and to A = 0.25 for CIFAR-100.
We plot in FigureE] the evolution of the confidence o from Equation (2)) for easy, hard and noisy
samples. As training progresses, noisy and hard samples get more clearly separated.

We report our results (averaged over 5 runs) for different proportions of corrupted labels in Figure [6]
as well as results from the state of the art. Once again, we observe very similar performance regardless
of 7 (either fixed to log(C) or using automatic averaging). On clean datasets, the SuperLoss slightly
improves over the baseline (e.g., from 95.8% + 0.1 to 96.0% =+ 0.1 on CIFAR-10) even though the
performance is quite saturated. In the presence of symmetric noise, the SuperLoss performs better
or on par compared to all recent approaches that we are aware of, at the exception of [0, 28]]. In
particular, our method slightly outperforms the confidence-aware loss proposed by Saxena et al. [48]]
in fair settings, confirming that confidence parameters indeed do not need to be learned. For instance,
using global averaging for 7, our method obtains 91.55% = 0.33 and 71.05% =+ 0.08 accuracy under
40% label noise on CIFAR-10 and CIFAR-100 respectively, compared to 91.10% =+ 0.70 and 70.93%
=4 0.15 for [48]. Finally, note that our method outperforms much more complex and specialized
approaches, even though we do not particularly target classification, nor require any change in the
network, nor use a special training procedure.

WebVision [31] is a large-scale dataset of 2.4 million images with C' = 1000 classes, automatically
gathered from the web by querying search engines with the class names. It thus inherently contains a
significant level of noise. We follow [48] and train a ResNet-18 model using SGD for 120 epochs
with a weight decay of 104, an initial learning rate of 0.1, divided by 10 at 30, 60 and 90 epochs.
The regularization parameter for the SuperLoss is set to A = 0.25 and we use a fixed threshold
for 7 = log(C). The final accuracy is 66.7% =+ 0.1 which represents a consistent gain of +1.2%
(aggregated over 4 runs) compared to the baseline (65.5% =+ 0.1). We point out that this gain is for
free as the SuperLoss does not require any change in terms of training time or engineering efforts.
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3.4 Object detection

We perform experiments for the object detection task on Pascal VOC [7] and its noisy version
from [30] where symmetric label noise is applied to 20%, 40% or 60% of the instances. We use two
object detection frameworks from detectronQE} Faster R-CNN [45] and RetinaNet [33]]. Figure
shows the standard AP50 metric for varying levels of noise using the standard box classification loss
or the SuperLoss (more metrics are in the Supplementary). While the baseline and the SuperLoss
are on par on clean data, the SuperLoss again significantly outperforms the baseline in the presence
of noise. For instance, the performance drop at 60% of label noise is reduced by 5 points for Faster
R-CNN, and by 9 points for Retina-Net. For 7, we observe a slight edge for 7 = log(C') with Faster
R-CNN. The same fixed threshold makes no sense for RetinaNet as it does not rely on cross-entropy
loss, but we observe that global and exponential averaging perform similarly. In Figure[7] (right), we
compare our method to some state-of-the-art noise-robust approaches [9} [15 30} [68]. Once again
our simple and generic SuperLoss outperforms other approaches leveraging complex strategies to
identify and/or correct noisy samples.

3.5 Image retrieval

We evaluate the SuperLoss on the image retrieval task using the Revisited Oxford and Paris bench-
mark [42]. To train our method, we use the large-scale Landmarks dataset [2] that is composed of
about 200K images (divided into 160K/40K for training/validation) gathered semi-automatically
using search engines. The fact that a cleaned version of the same dataset (released in [12]) comprises
about 4 times less images gives a rough idea of the tremendous amount of noise it contains, and of
the subsequent difficulty to leverage this data using standard loss functions. In order to establish
a meaningful comparison we also experiment with the cleaned dataset [[12] which comprises 42K
training and 6K validation images. Following [12], we refer to these datasets as Landmarks-full and
Landmarks-clean. As retrieval model, we use ResNet-50 with Generalized-Mean (GeM) pooling [43]]
and a contrastive loss [14ﬂ When training on Landmarks-clean, the default hyper-parameters
from [42]] for the optimizer and the hard-negative mining procedure gives excellent results (i.e. 100
epochs, learning rate of 10~% with exponential decay of exp(—1,/100), 2000 queries per epoch and
20K negative pool size). In contrast, they lead to poor performance when training on Landmarks-full.
We thus retune the hyper-parameters for the baseline on the validation set of Landmarks-full and find
that reducing the hard negative mining hyper-parameters is important (200 queries and pool size of
500 negatives). In all cases, we train the SuperLoss with the same settings than the baseline using
global averaging for 7. At test time, we follow [42] and use multiple scales and descriptor whitening.

Results. We report the mean Average Precision (mAP) in Table[T} On clean data, the SuperLoss has
minor impact. However, it enables an impressive performance boost on noisy data (Landmarks-full),
overall outperforming the baseline trained using clean data. This result shows that our SuperLoss
makes it possible to train a model from a large automatically-collected dataset with a better perfor-
mance than from a manually labelled subset. We also include state-of-the-art results trained and
evaluated with identical code [42] at the end of Table[I] We perform slightly better than ResNet-
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Table 1: Image retrieval results (mAP) for different training sets and losses. Hard-neg indicates the
couple of hyper-parameters (query size, pool size) used for hard-negative mining.

Network + pooling Training set | Loss Hard-neg | ROxf (M) ROxf(H) RPar(M) RPar(H) Avg
contrastive  2K,20K ‘ 61.1 33.3 77.2 57.2 57.2

Landmarks-clean

SuperLoss  2K,20K 61.3 333 77.0 57.0 57.2

ResNet-50+GeM contrastive  2K,20K | 419 17.5 65.0 394 410
Landmarks-full contrastive 200,500 54.4 28.7 72.6 50.2 51.4

SuperLoss 200,500 62.7 38.1 71.0 56.5 58.6

ResNet-101+GeM [42] SfM-120k (clean) \ contrastive  2K,20K \ 65.4 40.1 76.7 55.2 59.3

101+GeM on RParis despite the deeper backbone and the fact that it is trained on SfM-120k, a clean
dataset of comparable size requiring a complex and expensive procedure to collect [43]].

4 Related work

Curriculum Learning, a technique inspired by the learning process of humans and animals [50],
was introduced in a machine learning context in [4]. The key idea is to feed training samples to
the learner in order of increasing difficulty, just like humans naturally learn easier concepts before
more complex ones. This was shown to improve the speed of convergence and the quality of the
local minima obtained [3} 4, |13} 22} |49]. In these works, the order is determined prior to the training,
leading to potential inconsistencies between the fixed curriculum and the model being learned. To
remedy this, Kumar et al. [25] proposed the concept of self-paced learning where the curriculum
is constructed without supervision in a dynamic way to adjust to the pace of the learner. This
seminal concept has inspired many variations in diverse domains like classification [, 140, 48],
matrix factorization [17, [71], clustering [10, I57] and object [51} 64, 65]] / face detection [32} [58].
Recent works have focused towards learning-based self-paced approaches where the curriculum is
performed by learning to weight samples, either explicitly [18} 134} 144} 149]167]] or implicitly [48]]. This
latter work [48]] hinges upon a modified cross-entropy loss modulated by additional data parameters
representing the difficulty of each sample. Our SuperLoss can be seen as a generalized and simplified
version of it without the need for extra data parameters.

Learning on noisy data is a closely related topic, due to the inherent hardness of noisy samples. In
this context, CL turns out to be particularly appropriate as it automatically downweights samples
based on their difficulty, effectively discarding noisy samples [18} 134, 44,161]. The recent Curriculum
Loss [34]], for instance, adaptively selects samples for model training, avoiding noisy samples that
have a larger loss. Although not strictly related to CL, a series of works leveraging similar principle
has been proposed. O2U-Net [19] distinguishes correct samples from noisy ones by monitoring
their loss while varying the learning rate. In [[I} 28]], the per-sample loss distribution is modeled
with a bi-modal mixture model used to dynamically divide the training data into clean and noisy
sets. Ensembling methods [6, 9] are also popular to prevent the memorization of noisy samples. For
instance, SELF [6] progressively filters samples from easy to hard ones at each epoch, which can
be viewed as CL. Co-teaching [15] and similar methods [28], 154} |62]] train two semi-independent
networks that exchange information about noisy samples to avoid their memorization. However,
these approaches are developed specifically for a given task (e.g., classification) and hardly generalize
to other tasks. Furthermore, they require a dedicated training procedure which can be cumbersome.
Some other approaches focus on designing robust loss functions [[11} [15} 33} 141} 59, |69]], but they
again specialize on a single task. Our SuperLoss is inspired by the same principle but can be easily
plugged on top of any loss without any change in the learning procedure.

5 Conclusion

We have introduced the SuperLoss, a simple task-agnostic loss function which can be plugged on
top of any loss during training. It is a confidence-aware loss function where the optimal confidence
can be expressed in a closed-form solution. Our results on a variety of tasks show that using the
SuperLoss implicitly performs curriculum learning, leading to inherent noise robustness properties.



Broader Impact

Our approach can be used on top of any loss, and thus applied to various tasks: it basically applies
the principles of automatic curriculum learning to any learning problem. The main benefit is that it
allows to train models that will perform better, especially in the case where training data are corrupted
by noise. Note that this point might actually be considered as extremely positive given the enormous
annotation efforts necessary to build very large-scale datasets and previously thought as unavoidable
to reach high performance. Having to annotate a large-scale dataset might be a real barrier for new
players to enter into the business for an existing task or for developing new services, because of
both the financial aspects and the time it would take. Besides, the annotation effort is most of the
time accomplished in poor working conditions. It is often not even considered as a salaried job, thus
preventing from social advantages of real jobs including a minimal decent salary. For these reasons
and thanks to the simple and generic nature of our approach, we believe in its wide adoption and
usage by both research and industrial communities.

Concerning the downsides, we first generally note that our main benefit, training a better model,
is also applicable to tasks that may have a negative impact on the society. We also note that our
SuperLoss generally has trouble to significantly outperform a baseline approach when training from
a clean dataset of comparable size. For applications that require very high precision (e.g., for medical
diagnosis), manual annotations would still be more than recommended, and even needed, compared
to adopting our solution for noise-resistant training.
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