
Exploration of Interesting Dense Regions on Spatial Data
Behrooz Omidvar-Tehrani
NAVER LABS Europe (France)

behrooz.omidvar-tehrani@naverlabs.com

Plácido A. Souza Neto
Federal Institute of Rio Grande do Norte (Brazil)

placido.neto@ifrn.edu.br

Francisco B. Silva Júnior
Federal University of Rio Grande do Sul (Brazil)

fbsjunior@inf.ufrgs.br

Felipe F. Pontes
Federal Institute of Rio Grande do Norte (Brazil)

freire.pontes@academico.ifrn.edu.br

ABSTRACT
Nowadays, spatial data are ubiquitous in various fields of science,
such as transportation and smart city management. A recent
research direction in analyzing spatial data is to provide means
for “exploratory analysis” of such data where users are guided
towards interesting options in consecutive analysis iterations.
Typically, the guidance component learns user’s preferences us-
ing his/her explicit feedback, e.g., picking a spatial point of in-
terest (POI) or selecting a region of interest. However, it is often
the case that users forget or don’t feel necessary to explicitly ex-
press their feedback in what they find interesting. Our approach
captures implicit feedback on spatial data. The approach consists
of observing mouse moves (as a means of user’s interaction) to
discover interesting spatial regions with dense mouse hovers. In
this paper, we define, formalize, and explore Interesting Dense
Regions (IDRs) which capture preferences of users, in order to
automatically find interesting spatial highlights. Our approach
involves a polygon-based abstraction layer for capturing pref-
erences. Using these IDRs, we highlight POIs to guide users in
the analysis process. We discuss the efficiency and effectiveness
of our approach through realistic examples and experiments on
Airbnb and Yelp datasets.

1 INTRODUCTION
Nowadays, there has been a meteoric rise in the generation of
spatial datasets in various fields of science, such as transporta-
tion, lodging services, and smart city management [1, 2]. As each
record in spatial data represents an activity in a precise geograph-
ical location, analyzing such data enables discoveries grounded
on facts. Typically, spatial data analysis begins with an impre-
cise question in the mind of the user, i.e., exploratory analysis.
The user requires to go through several trial-and-error iterations
to improve his/her understanding of the spatial data and gain
insights. Each iteration involves visualizing a subset of data on
geographical maps using an off-the-shelf product (e.g., Tableau1,
Exhibit2, Spotfire3) where the user can investigate on different
parts of the visualization by zooming in/out and panning.

Spatial data are often voluminous. Hence the focus in the liter-
ature of spatial data analysis is on “efficiency”, i.e., enabling fluid
means of navigation in spatial data to facilitate the exploratory
analysis. The common approach is to design pre-computed in-
dexes which enable efficient retrieval of spatial data (e.g., [3, 4]).
However, there has been less attention to the “value” derived
1http://www.tableau.com
2http://www.simile-widgets.org/exhibit/
3http://spotfire.tibco.com

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
Workshop Proceedings of the EDBT/ICDT 2020 Joint Conference, March 30-April 2,
2020on CEUR-WS.org Distribution of this paper is permitted under the terms of
the Creative Commons license CC-by-nc-nd 4.0.

from spatial data. Despite the decent progress on the efficiency
front, a user may easily get lost in the plethora of geographical
points of interest (POIs), mainly due to two following reasons:

• In an exploratory context, the user doesn’t know a priori what
to investigate next.
• Moreover, he/shemay easily get distracted andmiss interesting
POIs by visual clutter caused by huge overlaps among POIs.

The main drawback of the traditional analysis models is that
the user has a passive role in the process. In other words, the
user’s feedback (i.e., his/her likes and dislikes) is ignored and
only the input query (i.e., his/her explicit request) is served. In
case feedback is incorporated, the process can be more directed
towards user’s interests where his/her partial needs can be served
earlier in the process [5]. In this paper, we advocate for a “guid-
ance layer” on top of the raw visualization of spatial data to
enable users know “what to see next”. This guidance should be
a function of user feedback: the system should return options
similar to what the user has already appreciated.

Various approaches in the literature propose methodologies to
incorporate user’s feedback in the exploration process of spatial
data [6–10]. Typically, feedback is considered as a function which
is triggered by any user’s action on the map. The action can be
“selecting a POI”, “moving to a region”, “asking for more details”,
etc. The function then updates a “profile vector” which records
user’s interests in a transparent way. The updated content in the
profile vector enables the guidance functionality. For instance, if
the user shows interest in a POI which describes a house with
balcony, this choice of amenity will reflect his/her profile to
prioritize other houses with balcony in future iterations.

Feedback is often expressed explicitly, i.e., the user clicks on
a POI and mentions if he/she likes or dislikes the POI [11–13].
However, there are several cases that the feedback is expressed
implicitly, i.e., the user does not explicitly click on a POI, but
there exist correlations with other signals captured from the user
which provide hint on his/her interest. For instance, it is often
the case in spatial data analysis that users look at some regions
of interest but do not provide an explicit feedback. Another ex-
ample is frequent mouse moves around a region which is a good
indicator of the user’s potential interest in the POIs in that region.
Users often hover their mouse in a region of interest to collect
information on the background map (e.g., touristic places, parks,
and nearby grocery stores, presented in the form of map layers
and tooltips) before landing on a decision about picking a POI
(such as a hotel) in that region. Implicit feedbacks are more chal-
lenging to capture and hence less investigated in the literature.
The following example describes a use case of implicit feedbacks.
This will be our running example which we follow throughout
the paper.

Example. Benício is planning to live in Paris for a sabbatical leave.
He decides to rent a home-stay from Airbnb website4. He likes to
discover the city, hence he is open to any type of lodging in any
region with an interest to stay in the center of Paris. The website
returns 1500 different locations. As he has no other preferences,
an exhaustive investigation needs scanning each location indepen-
dently, which is nearly infeasible. While he is scanning the very first
options, he shows interest in the region of Trocadero by hovering his
mouse around the Eiffel tower and checking the amenities within
that region. However, he forgets or doesn’t feel necessary to click
a POI (i.e., a home-stay) in that region. An ideal system should
capture this implicit feedback in order to short-list a small subset
of locations that Benício should consider as high priority.

The above example shows in practice that implicit feedback
capturing is crucial in the context of spatial data analysis, as a POI
can easily remain out of sight and be missed. It is particularly the
case in small-screen devices such as smart watches, smartphones,
and tablets.

In this paper, we present a simple yet effective approach whose
aim is to capture and analyze implicit feedback of users in spatial
data analysis. Without loss of generality, we focus on “mouse
moves” as the implicit feedback received from the user. Mouse
moves are the most common way that users interact with geo-
graphical maps to collect information within a region of inter-
est [14], such as information provided in the background map
(e.g., parks, theaters, shopping centers) and the tooltip informa-
tion which pop up by hovering (e.g., information about the POIs
such as price and reviews). It is shown in [15] that mouse gestures
have a strong correlation with “user engagement”. Intuitively,
a POI gets a higher weight in the user’s profile if the mouse
cursor moves around it frequently. However, our approach is
independent from the type of feedback enabler and can be easily
extended to other types such as gaze tracking, leap motions, as
well as touch gestures in touch screens.
Contributions. In this paper, we make the following contribu-
tions:

• We define and explore the notion of “implicit user feedback”
which enables a seamless navigation in spatial data.
• We define the notion of “information highlighting”, a mecha-
nism to highlight out-of-sight important information for users.
A clear distinction of our proposal with the literature is that it
doesn’t aim for pruning (such as top-k recommendation), but
leveraging the actual data with potential interesting results
(i.e., highlights).
• We define and formalize the concept of Interesting Dense Re-
gions (IDRs), a polygon-based approach to explore and high-
light spatial data.
• We propose an efficient greedy approach to compute highlights
on-the-fly.
• We show the effectiveness of our approach through a set of
qualitative experiments.

The outline of the paper is the following. Section 2 describes
our data model. In Section 3, we formally define our problem.
Then in Section 4, we present our solution and its algorithmic
details. Section 5 reports our experiments on the framework. We
review the related work in Section 6. We present some limitations
of our work in Section 7. Last, we conclude in Section 8.

4http://www.airbnb.com

2 DATA MODEL
We consider two different layers on a geographical map: “spatial
layer” and “interaction layer”. The spatial layer contains POIs
from a spatial database P. The interaction layer contains mouse
move pointsM.
Spatial layer. Each POI p ∈ P is described using its coordinates,
latitude and longitude, i.e., p = ⟨lat; lon⟩. Note that in this work,
we don’t consider “time” for POIs, as our contribution focuses on
their location. POIs are also associated to a set of domain-specific
attributes A. For instance, for a dataset of a real estate agency,
POIs are properties (houses and apartments) and A contains at-
tributes such as “surface”, “number of rooms” and “price”. The set
of all possible values for an attribute a ∈ A is denoted as dom(a).
We also define user’s feedback F as a vector over all attribute val-
ues (i.e., facets), i.e., F =

−−−−−−−−−−−→
∪a∈Adom(a). The vector F is initialized

by zeros and will be updated to express user’s preferences.
Interaction layer. Whenever the user moves his/her mouse,
a new point m is appended to the set M. Each mouse move
point is described using the pixel position that it touches and the
clock time of the move. Hence each mouse move point is a tuple
m = ⟨x;y; t⟩, where x and y specifies the pixel location and t is a
Unix Epoch time. To conform with geographical standards, we
assumem = ⟨0; 0⟩ sits at the middle of the interaction layer, both
horizontally and vertically.

The user is in contact with the interaction layer. To update
the feedback vector F , we need to translate pixel locations in the
interaction layer to latitudes and longitudes in the spatial layer.
We employ equirectangular projection to obtain the best possible
approximation of a pointm = ⟨x;y; t⟩ ∈ M in the spatial layer,
denoted as p(m).

p(m = ⟨x;y; t⟩) = ⟨lat = y + γ ; lon =
x

cosγ
+ θ⟩ (1)

The inverse operation, i.e., transforming a point p = ⟨lat; lon⟩
from the spatial layer to the interaction is done using Equation 2.

m(p = ⟨lat; lon⟩) = ⟨x = (lon − θ) × cosγ ;y = lat − γ ⟩ (2)

The reference point for the transformation is the center of
both layers. In Equations 1 and 2, we assume that γ is the latitude
and θ is the longitude of a point in the spatial layer corresponding
to the center of the interaction layer, i.e.,m = ⟨0; 0⟩.

3 PROBLEM DEFINITION
When analyzing spatial data, users require to obtain only a few
options (so-called “highlights”) to focus on. These options should
be in-line with what they have already appreciated. In this paper,
we formulate the problem of “information highlighting using
implicit feedback”, i.e., highlight a few POIs based on implicit
interests of the user in order to guide him/her towards what
he/she should concentrate on in consecutive iterations of the
analysis process. We formally define our problem as follows.
Problem. Given a time tc and an integer constant k , update the
feedback vector F using pointsm ∈ M wherem:t ≤ tc , and choose
k POIs Pk ⊆ P as “highlights” where Pk satisfies two following
constraints.

(i) ∀p ∈ Pk ; similarity(p; F) is maximized.

(ii) diversity(Pk) is maximized.

The first constraint guarantees that returned highlights are
highly similar with user’s interests captured in F . The second

Algorithm 1: Spatial Highlighting Algorithm

Input: Current timetc, mouse move pointsM
Output: Highlights Pk

1 S €nd_interesting_dense_regions(tc; M) // Section 4.1

2 Ps match_points(S; P) // Section 4.2

3 F update_feedback_vector(F; Ps) // Section 4.3

4 Pk get_highlights(P; F) // Section 4.4

5 return Pk

constraint ensures thatk POIs cover di�erent regions and they
don't repeat themselves. While our approach is independent from
the way thatsimilarity anddiversityfunctions are formulated,
we provide a formal de�nition of these functions in Section 4.

The aforementioned problem is hard to solve due to the fol-
lowing challenges.

Challenge 1. First, it is not clear how mouse move points in�u-
ence the feedback vector. Mouse moves occur on a separate layer
and there should be some meaningful transformations to inter-
pret mouse moves as potential changes in the feedback vector.

Challenge 2. Analyzing all generated mouse moves is challeng-
ing and may introduce false positives. A typical mouse with 1600
DPI (Dots Per Inch) touches 630 pixels for one centimeter of
move. Hence a mouse move from the bottom to the top of a typi-
cal 13-inch screen would yield 14,427 points which may not be
necessarily meaningful.

Challenge 3. Beyond the two �rst challenges, �nding the most
similar and diverse POIs withF needs an exhaustive scan of
all POIs inP which is prohibitively expensive: in most spatial
datasets, there exist millions of POIs. Moreover, we need to follow
bi-objective optimization considerations as we aim to optimize
both similarity and diversity at the same time [16].

We recognize the complexity of our problem using the afore-
mentioned challenges. In Section 4, we discuss a solution for the
discussed problem and its associated challenges.

4 INTERESTING DENSE REGIONS
Our approach exploits user's implicit feedback (i.e., mouse moves)
to highlight a few interesting POIs as future analysis directions.
Algorithm 1 summarizes the principled steps of our approach.

The algorithm begins by mining the set of mouse move pointsM
in the interaction layer to discover one or several Interesting
Dense Regions, abbr., IDRs, in which most user's interactions
occur (line 1). Then it matches the POIsP with IDRs using Equa-
tion 2 in order to �nd POIs inside each region (line 2). The at-
tributes of resulting POIs will be exploited to update the user's
feedback vectorF (line 3). The updated vectorF will then be
used to �ndk highlights (line 4). These steps ensure that the �nal
highlights re�ect user's implicit interests. We detail each step as
follows (Sections 4.1 to 4.4).

4.1 Discovering IDRs
The objective of this step is to obtain one or several regions in
which the user has expressed his/her implicit feedback. There
are two observations for such regions.

Observation 1. We conjecture that a region is more interesting
for the user if it is denser, i.e., the user moves his/her mouse in that
region several times, to collect information from the background
map.

Algorithm 2: Find Interesting Dense Regions (IDRs)

Input: Current timetc, mouse move pointsM
Output: IDRsS

1 S ;
2 g number of time segments
3 for i 2 [1;g] do
4 M i f m = hx;y; t i j (tc

g � i) � t � (tc
g � (i + 1))g

5 Ci mine_clusters(M i)
6 Oi €nd_ploygons(Ci)
7 end
8 for Oi ; Oj wherei; j 2 [0;g] andi 6= j do

S:append(intersect(Oi ; Oj))
9 return S

Observation 2. It is possible that the user moves his/her mouse
everywhere in the map. This should not signify that all those
locations have the same signi�cance.

Following our observations, we propose Algorithm 2 for min-
ing IDRs. We add points toM only every200msto prevent adding
redundant points (i.e., Challenge 2). Following Observation 1 and
in order to mine the recurring behavior of the user, the algorithm
begins by partitioning the setM into g �xed-length consecutive
segmentsM 1 to M g . The �rst segment starts at time zero (where
the system started), and the last segment ends attc, i.e., the cur-
rent time. Following Observation 2, we then �nd dense clusters
in each segment ofM using a variant of DB-SCAN approach [17].
Finally, we return intersections among those clusters as IDRs.

For clustering points in each time segment (i.e., line 5 of Al-
gorithm 2), we use ST-DBSCAN [18], a space-aware variant of
DB-SCAN for clustering points based on density. For each subset
of mouse move pointsM i , i 2 [1;g], ST-DBSCAN begins with a
random pointm0 2 M i and collects all density-reachable points
fromm0 using a distance metric. As mouse move points are in the
2-dimensional pixel space (i.e., the display), we choose euclidean
distance as the distance metric. Ifm0 turns out to be a core object,
a cluster will be generated. Otherwise, ifm0 is a border object,
no point is density-reachable fromm0 and the algorithm picks
another random point inM i . The process is repeated until all of
the points have been processed.

Once clusters are obtained for all subsets ofM , we �nd their
intersections to locate recurring regions (line 6). To obtain inter-
sections, we need to clearly de�ne the spatial boundaries of each
cluster. Hence for each cluster, we discover its corresponding
polygon that covers the points inside. For this aim, we employ
Quickhull algorithm, a quicksort-style method which computes
the convex hull for a given set of points in a 2D plane [19].

We describe the process of �nding IDRs in an example. Figure 1
shows the steps that Benício follows in our running example to
explore home-stays in Paris. Figure 1.A shows mouse moves of
Benício in di�erent time stages. In this example, we considerg = 3
and capture Benício's feedback in three di�erent time segments
(progressing from Figures 1.B to 1.D). It shows that Benício started
his search around Ei�el Tower and Arc de Triomphe (Figure 1.B)
and gradually showed interest in south (Figure 1.C) and north
(Figure 1.D) as well. All intersections between those clusters are
discovered (hatching regions in Figure 1.E) which will constitute
the set of IDRs (Figure 1.F), i.e., IDR1 to IDR4.

Figure 1: The process of �nding IDRs on Airbnb dataset.

4.2 Matching Points
Being a function of mouse move points, IDRs are discovered
in the interaction layer. We then need to �nd out which POIs
in P fall into IDRs, hence forming the subsetPs. We employ
Equation 2 to transform those POIs from the spatial layer to the
interaction layer. Then a simple �spatial containment� function
can verify which POIs �t into the IDRs. Given a POIp and an
IDRr , a functioncontains(p; r) returns �true� if p is insider , oth-
erwise �false�. In our case, we simply use the implementation of
ST_Within(p; r) module in PostGIS5, i.e., our underlying spatial
DBMS which hosts the data.

In the vanilla version of our spatial containment function, all
POIs should be checked against all IDRs. Obviously, this depletes
the execution time. To prevent the exhaustive scan, we employ
Quadtrees [20] in a two-step approach.

(i) In an o�ine process, we build a Quadtree index for all POIs
in P. We record the membership relations of POIs and cells in
the index.

(ii) When IDRs are discovered, we record which cells in the
Quadtree index intersect with IDRs. As we often end up with
few IDRs, the intersection veri�cation performs fast. Then for
matching POIs, we only check a subset which is inside the cells
associated to IDRs and ignore the POIs outside. This leads to a
drastic pruning of POIs inP.

We follow our running example and illustrate the matching
process in Figure 2. In theAirbnb dataset, POIs are home-stays
which are shown with their nightly price on the map. We observe
that there exist many matching POIs with IDR3 and absolutely
no matching POI for IDR2. For IDR4, although there exist many
home-stays below the region, we never check their containment,
as they belong to a Quadtree cell which doesn't intersect with
the IDR.

4.3 Updating user Feedback Vector
The set of matching POIsPs (line 2 of Algorithm 1) depicts the
implicit preference of the user. We keep track of this preference

5https://postgis.net/docs/manual-dev/ST_Within.html

Figure 2: Matching POIs for IDR1 to IDR4.

in a feedback vectorF. The vector is initialized by zero, i.e., the
user has no preference at the beginning. We updateF using the
attributes of the POIs inPs. We enable transparency by choosing
F's schema to be de�ned on the POI attributes. In exploratory
analysis scenarios, it is often the case that users do not trust in
what they get from the system (i.e., algorithmic anxiety [21])
and want to know what has been learned from them. Having
a transparent user pro�le enables an easy examination of its
content by the user.

We consider anincrement value� to updateF. If p 2 Ps getsv1
for attribute a1, we augment the value in theF's cell of ha1;v1i
by � . Note that we only consider incremental feedback, i.e., we
never decrease a value inF.

	Abstract
	1 Introduction
	2 Data Model
	3 Problem Definition
	4 Interesting Dense Regions
	4.1 Discovering IDRs
	4.2 Matching Points
	4.3 Updating user Feedback Vector
	4.4 Generating Highlights

	5 Experiments
	5.1 Usefulness
	5.2 Effectiveness

	6 Related Work
	7 Limitations
	8 Conclusion
	References

