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ABSTRACT
Nowadays, spatial data are ubiquitous in various fields of science,
such as transportation and smart city management. A recent
research direction in analyzing spatial data is to provide means
for “exploratory analysis” of such data where users are guided
towards interesting options in consecutive analysis iterations.
Typically, the guidance component learns user’s preferences us-
ing his/her explicit feedback, e.g., picking a spatial point of in-
terest (POI) or selecting a region of interest. However, it is often
the case that users forget or don’t feel necessary to explicitly ex-
press their feedback in what they find interesting. Our approach
captures implicit feedback on spatial data. The approach consists
of observing mouse moves (as a means of user’s interaction) to
discover interesting spatial regions with dense mouse hovers. In
this paper, we define, formalize, and explore Interesting Dense
Regions (IDRs) which capture preferences of users, in order to
automatically find interesting spatial highlights. Our approach
involves a polygon-based abstraction layer for capturing pref-
erences. Using these IDRs, we highlight POIs to guide users in
the analysis process. We discuss the efficiency and effectiveness
of our approach through realistic examples and experiments on
Airbnb and Yelp datasets.

1 INTRODUCTION
Nowadays, there has been a meteoric rise in the generation of
spatial datasets in various fields of science, such as transporta-
tion, lodging services, and smart city management [1, 2]. As each
record in spatial data represents an activity in a precise geograph-
ical location, analyzing such data enables discoveries grounded
on facts. Typically, spatial data analysis begins with an impre-
cise question in the mind of the user, i.e., exploratory analysis.
The user requires to go through several trial-and-error iterations
to improve his/her understanding of the spatial data and gain
insights. Each iteration involves visualizing a subset of data on
geographical maps using an off-the-shelf product (e.g., Tableau1,
Exhibit2, Spotfire3) where the user can investigate on different
parts of the visualization by zooming in/out and panning.

Spatial data are often voluminous. Hence the focus in the liter-
ature of spatial data analysis is on “efficiency”, i.e., enabling fluid
means of navigation in spatial data to facilitate the exploratory
analysis. The common approach is to design pre-computed in-
dexes which enable efficient retrieval of spatial data (e.g., [3, 4]).
However, there has been less attention to the “value” derived
1http://www.tableau.com
2http://www.simile-widgets.org/exhibit/
3http://spotfire.tibco.com
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from spatial data. Despite the decent progress on the efficiency
front, a user may easily get lost in the plethora of geographical
points of interest (POIs), mainly due to two following reasons:

• In an exploratory context, the user doesn’t know a priori what
to investigate next.
• Moreover, he/shemay easily get distracted andmiss interesting
POIs by visual clutter caused by huge overlaps among POIs.

The main drawback of the traditional analysis models is that
the user has a passive role in the process. In other words, the
user’s feedback (i.e., his/her likes and dislikes) is ignored and
only the input query (i.e., his/her explicit request) is served. In
case feedback is incorporated, the process can be more directed
towards user’s interests where his/her partial needs can be served
earlier in the process [5]. In this paper, we advocate for a “guid-
ance layer” on top of the raw visualization of spatial data to
enable users know “what to see next”. This guidance should be
a function of user feedback: the system should return options
similar to what the user has already appreciated.

Various approaches in the literature propose methodologies to
incorporate user’s feedback in the exploration process of spatial
data [6–10]. Typically, feedback is considered as a function which
is triggered by any user’s action on the map. The action can be
“selecting a POI”, “moving to a region”, “asking for more details”,
etc. The function then updates a “profile vector” which records
user’s interests in a transparent way. The updated content in the
profile vector enables the guidance functionality. For instance, if
the user shows interest in a POI which describes a house with
balcony, this choice of amenity will reflect his/her profile to
prioritize other houses with balcony in future iterations.

Feedback is often expressed explicitly, i.e., the user clicks on
a POI and mentions if he/she likes or dislikes the POI [11–13].
However, there are several cases that the feedback is expressed
implicitly, i.e., the user does not explicitly click on a POI, but
there exist correlations with other signals captured from the user
which provide hint on his/her interest. For instance, it is often
the case in spatial data analysis that users look at some regions
of interest but do not provide an explicit feedback. Another ex-
ample is frequent mouse moves around a region which is a good
indicator of the user’s potential interest in the POIs in that region.
Users often hover their mouse in a region of interest to collect
information on the background map (e.g., touristic places, parks,
and nearby grocery stores, presented in the form of map layers
and tooltips) before landing on a decision about picking a POI
(such as a hotel) in that region. Implicit feedbacks are more chal-
lenging to capture and hence less investigated in the literature.
The following example describes a use case of implicit feedbacks.
This will be our running example which we follow throughout
the paper.



Example. Benício is planning to live in Paris for a sabbatical leave.
He decides to rent a home-stay from Airbnb website4. He likes to
discover the city, hence he is open to any type of lodging in any
region with an interest to stay in the center of Paris. The website
returns 1500 different locations. As he has no other preferences,
an exhaustive investigation needs scanning each location indepen-
dently, which is nearly infeasible. While he is scanning the very first
options, he shows interest in the region of Trocadero by hovering his
mouse around the Eiffel tower and checking the amenities within
that region. However, he forgets or doesn’t feel necessary to click
a POI (i.e., a home-stay) in that region. An ideal system should
capture this implicit feedback in order to short-list a small subset
of locations that Benício should consider as high priority.

The above example shows in practice that implicit feedback
capturing is crucial in the context of spatial data analysis, as a POI
can easily remain out of sight and be missed. It is particularly the
case in small-screen devices such as smart watches, smartphones,
and tablets.

In this paper, we present a simple yet effective approach whose
aim is to capture and analyze implicit feedback of users in spatial
data analysis. Without loss of generality, we focus on “mouse
moves” as the implicit feedback received from the user. Mouse
moves are the most common way that users interact with geo-
graphical maps to collect information within a region of inter-
est [14], such as information provided in the background map
(e.g., parks, theaters, shopping centers) and the tooltip informa-
tion which pop up by hovering (e.g., information about the POIs
such as price and reviews). It is shown in [15] that mouse gestures
have a strong correlation with “user engagement”. Intuitively,
a POI gets a higher weight in the user’s profile if the mouse
cursor moves around it frequently. However, our approach is
independent from the type of feedback enabler and can be easily
extended to other types such as gaze tracking, leap motions, as
well as touch gestures in touch screens.
Contributions. In this paper, we make the following contribu-
tions:

• We define and explore the notion of “implicit user feedback”
which enables a seamless navigation in spatial data.
• We define the notion of “information highlighting”, a mecha-
nism to highlight out-of-sight important information for users.
A clear distinction of our proposal with the literature is that it
doesn’t aim for pruning (such as top-k recommendation), but
leveraging the actual data with potential interesting results
(i.e., highlights).
• We define and formalize the concept of Interesting Dense Re-
gions (IDRs), a polygon-based approach to explore and high-
light spatial data.
• We propose an efficient greedy approach to compute highlights
on-the-fly.
• We show the effectiveness of our approach through a set of
qualitative experiments.

The outline of the paper is the following. Section 2 describes
our data model. In Section 3, we formally define our problem.
Then in Section 4, we present our solution and its algorithmic
details. Section 5 reports our experiments on the framework. We
review the related work in Section 6. We present some limitations
of our work in Section 7. Last, we conclude in Section 8.

4http://www.airbnb.com

2 DATA MODEL
We consider two different layers on a geographical map: “spatial
layer” and “interaction layer”. The spatial layer contains POIs
from a spatial database P. The interaction layer contains mouse
move pointsM.
Spatial layer. Each POI p ∈ P is described using its coordinates,
latitude and longitude, i.e., p = ⟨lat, lon⟩. Note that in this work,
we don’t consider “time” for POIs, as our contribution focuses on
their location. POIs are also associated to a set of domain-specific
attributes A. For instance, for a dataset of a real estate agency,
POIs are properties (houses and apartments) and A contains at-
tributes such as “surface”, “number of rooms” and “price”. The set
of all possible values for an attribute a ∈ A is denoted as dom(a).
We also define user’s feedback F as a vector over all attribute val-
ues (i.e., facets), i.e., F =

−−−−−−−−−−−→
∪a∈Adom(a). The vector F is initialized

by zeros and will be updated to express user’s preferences.
Interaction layer. Whenever the user moves his/her mouse,
a new point m is appended to the set M. Each mouse move
point is described using the pixel position that it touches and the
clock time of the move. Hence each mouse move point is a tuple
m = ⟨x,y, t⟩, where x and y specifies the pixel location and t is a
Unix Epoch time. To conform with geographical standards, we
assumem = ⟨0, 0⟩ sits at the middle of the interaction layer, both
horizontally and vertically.

The user is in contact with the interaction layer. To update
the feedback vector F , we need to translate pixel locations in the
interaction layer to latitudes and longitudes in the spatial layer.
We employ equirectangular projection to obtain the best possible
approximation of a pointm = ⟨x,y, t⟩ ∈ M in the spatial layer,
denoted as p(m).

p(m = ⟨x,y, t⟩) = ⟨lat = y + γ , lon =
x

cosγ
+ θ⟩ (1)

The inverse operation, i.e., transforming a point p = ⟨lat, lon⟩
from the spatial layer to the interaction is done using Equation 2.

m(p = ⟨lat, lon⟩) = ⟨x = (lon − θ ) × cosγ ,y = lat − γ ⟩ (2)

The reference point for the transformation is the center of
both layers. In Equations 1 and 2, we assume that γ is the latitude
and θ is the longitude of a point in the spatial layer corresponding
to the center of the interaction layer, i.e.,m = ⟨0, 0⟩.

3 PROBLEM DEFINITION
When analyzing spatial data, users require to obtain only a few
options (so-called “highlights”) to focus on. These options should
be in-line with what they have already appreciated. In this paper,
we formulate the problem of “information highlighting using
implicit feedback”, i.e., highlight a few POIs based on implicit
interests of the user in order to guide him/her towards what
he/she should concentrate on in consecutive iterations of the
analysis process. We formally define our problem as follows.
Problem. Given a time tc and an integer constant k , update the
feedback vector F using pointsm ∈ M wherem.t ≤ tc , and choose
k POIs Pk ⊆ P as “highlights” where Pk satisfies two following
constraints.

(i) ∀p ∈ Pk , similarity(p, F ) is maximized.

(ii) diversity(Pk ) is maximized.

The first constraint guarantees that returned highlights are
highly similar with user’s interests captured in F . The second



Algorithm 1: Spatial Highlighting Algorithm
Input: Current time tc , mouse move pointsM
Output: Highlights Pk

1 S ← find_interesting_dense_regions(tc ,M) // Section 4.1

2 Ps ← match_points(S,P) // Section 4.2

3 F ← update_feedback_vector(F ,Ps ) // Section 4.3

4 Pk ← get_highlights(P, F ) // Section 4.4

5 return Pk

constraint ensures that k POIs cover different regions and they
don’t repeat themselves. While our approach is independent from
the way that similarity and diversity functions are formulated,
we provide a formal definition of these functions in Section 4.

The aforementioned problem is hard to solve due to the fol-
lowing challenges.
Challenge 1. First, it is not clear how mouse move points influ-
ence the feedback vector. Mouse moves occur on a separate layer
and there should be some meaningful transformations to inter-
pret mouse moves as potential changes in the feedback vector.
Challenge 2. Analyzing all generated mouse moves is challeng-
ing and may introduce false positives. A typical mouse with 1600
DPI (Dots Per Inch) touches 630 pixels for one centimeter of
move. Hence a mouse move from the bottom to the top of a typi-
cal 13-inch screen would yield 14,427 points which may not be
necessarily meaningful.
Challenge 3. Beyond the two first challenges, finding the most
similar and diverse POIs with F needs an exhaustive scan of
all POIs in P which is prohibitively expensive: in most spatial
datasets, there exist millions of POIs. Moreover, we need to follow
bi-objective optimization considerations as we aim to optimize
both similarity and diversity at the same time [16].

We recognize the complexity of our problem using the afore-
mentioned challenges. In Section 4, we discuss a solution for the
discussed problem and its associated challenges.

4 INTERESTING DENSE REGIONS
Our approach exploits user’s implicit feedback (i.e., mousemoves)
to highlight a few interesting POIs as future analysis directions.
Algorithm 1 summarizes the principled steps of our approach.

The algorithm begins bymining the set ofmousemove pointsM
in the interaction layer to discover one or several Interesting
Dense Regions, abbr., IDRs, in which most user’s interactions
occur (line 1). Then it matches the POIs P with IDRs using Equa-
tion 2 in order to find POIs inside each region (line 2). The at-
tributes of resulting POIs will be exploited to update the user’s
feedback vector F (line 3). The updated vector F will then be
used to find k highlights (line 4). These steps ensure that the final
highlights reflect user’s implicit interests. We detail each step as
follows (Sections 4.1 to 4.4).

4.1 Discovering IDRs
The objective of this step is to obtain one or several regions in
which the user has expressed his/her implicit feedback. There
are two observations for such regions.
Observation 1. We conjecture that a region is more interesting
for the user if it is denser, i.e., the usermoves his/hermouse in that
region several times, to collect information from the background
map.

Algorithm 2: Find Interesting Dense Regions (IDRs)
Input: Current time tc , mouse move pointsM
Output: IDRs S

1 S ← ∅

2 д←number of time segments
3 for i ∈ [1,д] do
4 Mi ← {m = ⟨x,y, t⟩|( tcд × i) ≤ t ≤ ( tcд × (i + 1))}
5 Ci ← mine_clusters(Mi )
6 Oi ← find_ploygons(Ci )
7 end
8 for Oi ,Oj where i, j ∈ [0,д] and i ̸= j do
S.append(intersect(Oi ,Oj ))

9 return S

Observation 2. It is possible that the user moves his/her mouse
everywhere in the map. This should not signify that all those
locations have the same significance.

Following our observations, we propose Algorithm 2 for min-
ing IDRs.We add points toM only every 200ms to prevent adding
redundant points (i.e., Challenge 2). Following Observation 1 and
in order to mine the recurring behavior of the user, the algorithm
begins by partitioning the setM into д fixed-length consecutive
segmentsM1 toMд . The first segment starts at time zero (where
the system started), and the last segment ends at tc , i.e., the cur-
rent time. Following Observation 2, we then find dense clusters
in each segment ofM using a variant of DB-SCAN approach [17].
Finally, we return intersections among those clusters as IDRs.

For clustering points in each time segment (i.e., line 5 of Al-
gorithm 2), we use ST-DBSCAN [18], a space-aware variant of
DB-SCAN for clustering points based on density. For each subset
of mouse move pointsMi , i ∈ [1,д], ST-DBSCAN begins with a
random pointm0 ∈ Mi and collects all density-reachable points
fromm0 using a distance metric. As mouse move points are in the
2-dimensional pixel space (i.e., the display), we choose euclidean
distance as the distance metric. Ifm0 turns out to be a core object,
a cluster will be generated. Otherwise, ifm0 is a border object,
no point is density-reachable fromm0 and the algorithm picks
another random point inMi . The process is repeated until all of
the points have been processed.

Once clusters are obtained for all subsets ofM, we find their
intersections to locate recurring regions (line 6). To obtain inter-
sections, we need to clearly define the spatial boundaries of each
cluster. Hence for each cluster, we discover its corresponding
polygon that covers the points inside. For this aim, we employ
Quickhull algorithm, a quicksort-style method which computes
the convex hull for a given set of points in a 2D plane [19].

We describe the process of finding IDRs in an example. Figure 1
shows the steps that Benício follows in our running example to
explore home-stays in Paris. Figure 1.A shows mouse moves of
Benício in different time stages. In this example, we considerд = 3
and capture Benício’s feedback in three different time segments
(progressing from Figures 1.B to 1.D). It shows that Benício started
his search around Eiffel Tower and Arc de Triomphe (Figure 1.B)
and gradually showed interest in south (Figure 1.C) and north
(Figure 1.D) as well. All intersections between those clusters are
discovered (hatching regions in Figure 1.E) which will constitute
the set of IDRs (Figure 1.F), i.e., IDR1 to IDR4.
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Figure 1: The process of finding IDRs on Airbnb dataset.

4.2 Matching Points
Being a function of mouse move points, IDRs are discovered
in the interaction layer. We then need to find out which POIs
in P fall into IDRs, hence forming the subset Ps . We employ
Equation 2 to transform those POIs from the spatial layer to the
interaction layer. Then a simple “spatial containment” function
can verify which POIs fit into the IDRs. Given a POI p and an
IDR r , a function contains(p, r ) returns “true” if p is inside r , oth-
erwise “false”. In our case, we simply use the implementation of
ST_Within(p, r ) module in PostGIS5, i.e., our underlying spatial
DBMS which hosts the data.

In the vanilla version of our spatial containment function, all
POIs should be checked against all IDRs. Obviously, this depletes
the execution time. To prevent the exhaustive scan, we employ
Quadtrees [20] in a two-step approach.
(i) In an offline process, we build a Quadtree index for all POIs
in P. We record the membership relations of POIs and cells in
the index.
(ii) When IDRs are discovered, we record which cells in the
Quadtree index intersect with IDRs. As we often end up with
few IDRs, the intersection verification performs fast. Then for
matching POIs, we only check a subset which is inside the cells
associated to IDRs and ignore the POIs outside. This leads to a
drastic pruning of POIs in P.

We follow our running example and illustrate the matching
process in Figure 2. In the Airbnb dataset, POIs are home-stays
which are shown with their nightly price on the map. We observe
that there exist many matching POIs with IDR3 and absolutely
no matching POI for IDR2. For IDR4, although there exist many
home-stays below the region, we never check their containment,
as they belong to a Quadtree cell which doesn’t intersect with
the IDR.

4.3 Updating user Feedback Vector
The set of matching POIs Ps (line 2 of Algorithm 1) depicts the
implicit preference of the user. We keep track of this preference

5https://postgis.net/docs/manual-dev/ST_Within.html

IDR1 IDR2

IDR3 IDR4

Figure 2: Matching POIs for IDR1 to IDR4.

in a feedback vector F . The vector is initialized by zero, i.e., the
user has no preference at the beginning. We update F using the
attributes of the POIs in Ps . We enable transparency by choosing
F ’s schema to be defined on the POI attributes. In exploratory
analysis scenarios, it is often the case that users do not trust in
what they get from the system (i.e., algorithmic anxiety [21])
and want to know what has been learned from them. Having
a transparent user profile enables an easy examination of its
content by the user.

We consider an increment value δ to update F . If p ∈ Ps getsv1
for attribute a1, we augment the value in the F ’s cell of ⟨a1,v1⟩
by δ . Note that we only consider incremental feedback, i.e., we
never decrease a value in F .



Table 1: Attributes of POIs in IDR1.

ID Price #Beds Balcony Air-cond. Rating
1 130e 1 Yes Yes 5/5
2 58e 1 Yes No 5/5
3 92e 2 Yes No 5/5
4 67e 1 Yes No 4/5

Table 2: Updating user Feedback Vector

Attribute-value Applying IDR 1 Normalized
⟨#Beds,1⟩ +3δ 0.19
⟨#Beds,2⟩ +δ 0.06
⟨#Beds,+2⟩ (no update) 0.00
⟨Balcony,Yes⟩ +4δ 0.25
⟨Balcony,No⟩ (no update) 0.00
⟨Air-cond.,Yes⟩ +δ 0.06
⟨Air-cond.,No⟩ +3δ 0.19
⟨Rating,1⟩ (no update) 0.00
⟨Rating,2⟩ (no update) 0.00
⟨Rating,3⟩ (no update) 0.00
⟨Rating,4⟩ +δ 0.06
⟨Rating,5⟩ +3δ 0.19

We explain the process of updating the feedback vector using a
toy example. Given the four matched POIs in IDR1 (Figure 2) with
prices 130e, 58e, 92e and 67e, we want to update the vector F
given those POIs. A few attributes of these POIs are mentioned
in Table 1. In practice, there are often more than 50 attributes for
POIs. The cells of F are illustrated in the first column of Table 2.
As three POIs get the value “1” for the attribute “#Beds”, then the
value in cell ⟨#Beds,1⟩ is augmented three times by δ . The same
process is repeated for all attribute-values of POIs in Ps . Note
that all cells of F are not necessarily touched in the feedback
update process. For instance, in the above example, 5 cells out of
12 remain unchanged.

By specifying an increment value, we can materialize the up-
dates and normalize the vector using a Softmax function. Given
δ = 1.0, the normalized values of the F vector is illustrated in the
third column of Table 2. Higher values of δ increase the influence
of feedbacks.

The normalized content of the vector F captures the implicit
preferences of the user. For instance, the content of F after ap-
plying POIs in IDR1 shows that the user has a high interest in
having a balcony in his/her home-stay, as his/her score for the
cell ⟨Balcony,Yes⟩ is 0.25, i.e., the highest among other cells. This
reflects the fact that all POIs in IDR1 has balcony. It is impor-
tant to note that although we only consider positive feedback,
the Softmax function lowers the values of untouched cells once
other cells get rewarded. The updated feedback vector is fully
transparent and the user can easily comprehend what has been
learned from his/her previous actions.

4.4 Generating Highlights
The ultimate goal is to highlightk POIs to guide users in analyzing
their spatial data. The updated feedback vector F is the input to
the highlighting phase. We assume that POIs in IDRs are already
investigated by the user. Hence our search space for highlighting
is P \ Ps . We seek two properties in k highlights: similarity and

diversity. First, the highlights should be in the same direction of
the user’s implicit feedback, hence similar to the vector F . The
similarity between a POI p ∈ P and the vector F is defined as
follows.

similarity(p, F ) = avga∈A (sim(p, F, a)) (3)

The sim() function can be any function such as Jaccard or
Cosine. Each attribute can have its own similarity function (as
string and integer attributes are compared differently.) Then sim()
works as an overriding-function which provides encapsulated
similarity computations for any type of attribute.

Second, highlighted POIs should also represent distinct di-
rections so that the user can observe different aspects of data
and decide based on the big picture. Given a set of POIs Pk =
{p1,p2 . . .pk } ⊆ P, we consider a pair-wise definition of diver-
sity as follows.

diversity(Pk ) = avg {p,p′ }⊂Pk |p ̸=p′distance(p,p
′) (4)

The function distance(p,p′) operates on geographical coordi-
nates of p and p′ and can be considered as any distance function
of Minkowski distance family. However, as distance computa-
tions are done in the spherical space, a natural choice is to employ
Haversine distance.

To solve our bi-objective problem (i.e., maximizing similar-
ity and diversity), we employ the ϵ-constraint method [22], i.e.,
we maximize diversity while satisfying a linear constraint for
similarity which only accepts values larger than or equal to ϵ .
Algorithm 3 describes our approach for highlighting k similar
and diverse POIs. We propose a best-effort greedy approach to
efficiently compute highlighted POIs. We consider an offline step
followed by the online execution of our algorithm.

In order to speed up the similarity computation in the online
execution, we pre-compute an inverted index for each single POI
p ∈ P in the offline step (as is commonly done in theWeb search).
Each index Lp for the POI p keeps all other POIs in P in decreas-
ing order of their similarity with p. While index computation
may be extremely time-consuming, we stop generating those
lists if the similarity value is lower than the ϵ threshold.

The first step of Algorithm 3 is to find themost similar POI to F ,
so-called p∗. The POI p∗ is the closest possible approximation
of F in order to exploit pre-computed similarities. The algorithm
makes sequential accesses to Lp∗ (i.e., the inverted index of the
POI p∗) to greedily maximize diversity. Algorithm 3 does not
sacrifice efficiency in price of value. We consider a time limit
parameter which determines when the algorithm should stop
seeking maximized diversity. Scanning inverted indexes guaran-
tees the similarity maximization even if time limit is chosen to be
very restrictive. Our observations with several spatial datasets
show that we achieve the diversity of more than 0.9 with time
limit set to 200ms .

In line 2 of Algorithm 3, Pk is initialized with the k highest
ranking POIs in Lp∗ . Function get_next(Lp∗ ) (line 3) returns the
next POI pnext in Lp∗ in sequential order. Lines 4 to 12 iterate
over the inverted indexes to determine if other POIs should be
considered to increase diversity while staying within the time
limit.

The algorithm looks for a candidate POI pcurrent ∈ Pk to
replace in order to increase diversity. The boolean function
diversity_improved() (line 6) checks if by replacing pcurrent by



Algorithm 3: Get k similar and diverse highlights
get_highlights()
Input: POIs P, Feedback vector F , k , time_limit
Output: Pk

1 p∗ ← max_sim_to(P, F )
2 Pk ← top_k(Lp∗ ,k)
3 pnext ← дet_next (Lp∗ )
4 while time_limit not exceeded ∨ pnext = ∅ do
5 for pcurrent ∈ Pk do
6 if diversity_improved(Pk ,pnext ,pcurrent ) then
7 Pk ← replace(Pk ,pnext ,pcurrent )
8 break

9 end
10 end
11 pnext ← дet_next (Lp∗ )
12 end
13 return Pk

pnext in Pk , the overall diversity of the new Pk increases. It is
important to highlight that for each run of the algorithm, we
only focus on one specific inverted list associated to the input
POI. Algorithm 3 verifies the similarity and diversity of each POI
with all other POIs, and then processes the normalization.

5 EXPERIMENTS
We discuss two sets of experiments. The first set is on the useful-
ness of our approach. Then we focus more on IDR discovery and
present some statistics and insights on the functionality of our
approach. The experiments are done on a 2.8 GHz Intel Core i5
machine running a Mac OS operating system.

5.1 Usefulness
First off, we validate the usefulness of our approach. For this aim,
we design a user study with 30 participants who are all students
of Computer Science. Given an exploratory task to fulfill, we
hypothesize that there are three prominent factors which influ-
ence the usefulness of our system: user expertise, type of the task,
and starting point. To examine the user expertise, we recruited
15 “novice” participants who don’t know the location under in-
vestigation, and also 15 “experts.” We also define two different
types of tasks on the Airbnb dataset of Paris with 1,000 POIs: T1:
“finding a POI in a requested location” (e.g., find a home-stay in the
“Champ de Mars” area), and T2: “finding a POI with a requested
profile” (e.g., find a cheap home-stay.) Last, the participants may
have different starting points, i.e., they may begin their naviga-
tion from a POI which is either I1: “geographically close to the
goal” or I2: “far from the goal”. For each participant, we report
a variant of time-to-insight measure, i.e., how long (in seconds)
the participants interact with the tool before fulfilling the task.
Evidently, less number of interactions are preferred as it means
that the participant can reach insights faster.

The participants perform the tasks T1 and T2 on two differ-
ent tools: Airbnb website (without information highlighting and
without incorporation of implicit feedbacks, as our baseline) and
our highlighting tool. Table 3 shows the results. Our initial obser-
vation is that the highlights enable users to fulfill tasks one order
of magnitude faster than the baseline without the highlights.
This shows that the highlighting approach with implicit feedback
capturing is an effective mechanism which helps users to reach

Table 3: Interactions of “novice” and “expert” participants

T1/I1 T2/I1 T1/I2 T2/I2
Novices using Airbnb 372s 421s 365s 430s
Experts using Airbnb 253s 302s 249s 298s

Novices using highlights 19s 24s 20s 25s
Experts using highlights 14s 17s 13s 17s

their goals in a reasonable time. Also expert participants need on
average 6.25 seconds less time than the novice participants when
using the highlights. Interestingly, starting POIs, i.e., I1 and I2, do
not have a huge impact on the number of steps. It is potentially
due to the diversity component which provides distinct options
and can quickly steer users towards their region of interest. We
also observe that the task T1 is an easier task than T2, as on aver-
age it took less time to be accomplished. This is potentially due
to where the user can request options similar to what he/she has
already observed and greedily move to his/her preferred regions.

5.2 Effectiveness
In the second part of our experiments, we analyze the effective-
ness of our approach in generating IDRs for information high-
lighting. We employ two different datasets, i.e., Airbnb and Yelp6.
We pick a similar subset from both datasets, i.e., home-stays and
restaurants in Paris, respectively. We consider four different sizes
of those datasets, i.e., 100, 1000, 2000 and 4000 POIs, respectively.
For each size of the datasets, we manually perform 20 sessions,
and then present some statistics as the average of the sessions.
We limit each session to 2 minutes where we seek for interesting
POIs in the datasets. We capture the following information in
each session:
• The number of regions created from the mouse moves during
the session;
• The number of generated IDRs (intersection of regions);
• The number of POIs from the dataset presented in each IDR;
• The coverage of POIs (in the dataset) with IDRs collectively.

Tables 4 and 5 show the results for Airbnb and Yelp, respec-
tively. In Table 4, we observe that the number of regions decreases
when the number of POIs increases. On average, 7.7 regions are
constructed per session. The average number of POIs presented
in IDRs is 25.97, which shows that our approach highlights at
least 8.05% of POIs from the dataset, on average. We notice an
outlier in the experiment with 2000 POIs in Table 4. This hap-
pened due the fact that the user concentrated in a very small
area generating a smaller number of IDRs, and consequently a
smaller number of POIs.

More uniform results are observed in Table 5, i.e., for Yelp
dataset vis-à-vis Airbnb. The average number of generated re-
gions reaches 12.75 per session. Also, the number of regions
decreases by increasing the number of POIs. The number of POIs
presented in IDRs is on average 108.65 and it represents on aver-
age 13.11% of POIs highlighted from the dataset.

6 RELATEDWORK
To the best of our knowledge, the problem of spatial information
highlighting using implicit feedback has not been addressed be-
fore in the literature. However, our work relates to a few others
in their semantics.
6https://www.yelp.com/dataset

https://www.yelp.com/dataset


Table 4: IDR statistics on Airbnb dataset

# POIs # regions # IDRs # POIs in IDRs % POIs
100 11.35 10.05 29.40 29.40%
1000 10.75 6.75 11.70 1.17%
2000 7.37 3.63 5.63 0.003%
4000 1.30 1.15 53.15 1.33%

average 7.69 7.64 25.97 8.05%

Table 5: IDR statistics on Yelp dataset

# POIs # regions # IDRs # POIs in IDRs % POIs
100 14.90 7.55 28.30 28.30%
1000 13.90 10.00 149.55 14.96%
2000 11.05 9.80 111.05 5.55%
4000 10.45 8.55 145.7 3.64%

average 12.57 8.97 108.65 13.11%

Information Highlighting. The literature contains a few in-
stances of information highlighting approaches [23–26]. How-
ever, all these methods are objective, i.e., they assume that user’s
preferences are given as a constant input and will never change
in the future. This limits their functionality for serving scenarios
of exploratory analysis. The only way to fulfill “spatial guidance”
is to consider the evolutionary and subjective nature of user’s
feedback. In our approach, the feedback vector gets updated in
time based on the implicit feedback of the user.

Online recommendation approaches can also be considered as
an information highlighting approach where recommended items
count as highlights. Most recommendation algorithms are space-
agnostic and do not take into account the spatial information.
While a few approaches focus on the spatial dimension [27–29],
they still lack the evolutionary feedback capturing. Moreover,
most recommendation methods miss “result diversification”, i.e.,
highlights may not be useful due to overlaps.
Feedback Capturing. Several approaches are proposed in the
state of the art for capturing different forms of feedback [8, 9, 11,
12, 30, 31]. The common approach is a top-k processing method-
ology in order to prune the search space based on the explicit
feedback of the user and return a small subset of interesting re-
sults of size k . A clear distinction of our proposal is that it doesn’t
aim for pruning, but leveraging the actual data with potential
interesting results (i.e., highlights) that the user may miss due
to the huge volume of spatial data. Moreover, in a typical top-
k processing algorithm, user’s choices are limited to k . On the
contrary, our IDR approach enables a freedom of choice where
highlights get seamlessly updated with new user’s choices.

Few works formulate fusing approaches of explicit and im-
plicit feedbacks to better capture user preferences [6, 7, 32]. Our
approach functions purely on implicit feedback and does not
require any sort of explicit signal from the user.
Region Discovery. Our approach finds interesting dense re-
gions (IDRs) in order to derive user’s implicit preferences. There
exist several approaches to infer a spatial region for a given set
of POIs [19, 33–37]. The common approach is to cluster POIs in
form of concave and convex polygons. In [33], an algorithm is
proposed to verify if a given POI p on the surface of a sphere is lo-
cated inside, outside, or along the border of an arbitrary spherical
polygon. In [34, 35], a non-convex polygon is constructed from

a set of input POIs on a plane. In [36, 37], imprecise regions are
delineated into a convex or concave polygon. In our approach, it
is important to discover regions by capturing mouse move POIs.
In case a concave polygon is constructed, the “dents” of such
a polygon may entail POIs which are not necessarily inM. In
the IDR’s algorithm, however, we adapt Quickhull [19], due its
simplicity, efficiency and its natural implementation of convex
polygons.

7 LIMITATIONS
In this paper, we presented a solution for highlighting out-of-
sight information using a polygon-based approach for capturing
implicit feedbacks. To the best of our knowledge, our work is the
first effort towards formalizing and implementing information
highlighting using implicit feedback. However, we consider our
work as an on-going effort where we envision to address some
limitations in the future, such as “customizability”, “performance”,
“cold start”, and “quantitative experiments”.
Custommaps and feedbacks. One limitation is about the “cus-
tomizable” use of geographical maps as an interaction means. As
we only consider static maps, we plan to work on translations and
rotations as a future work. We also consider adapting other types
of feedback enablers such as gaze tracking and touch gestures as
a direction of future work. Our research will investigate poten-
tial challenges which may arise when employing those feedback
enablers.
Mobility. Our current focus is only on POIs, and hence trajecto-
ries and areas of mobility are not incorporated directly. While
trajectories and areas can be broken into a subset of POIs (and
hence be easily fed to our approach), we envision to enrich our
model in a way that those mobility elements are considered as
first-class citizens.
Cold start.Our problem bears similarities with recommendation
algorithms where the quality of the output may be influenced
by scarce availability of input. This problem is referred to as the
cold start problem [38, 39]. While there is no guarantee for a
meaningful highlight in case of the complete absence of implicit
feedbacks, our approach can return a reasonable set of highlights
even with one single iteration of mouse moves. In the future, we
envision to tackle the no-input challenge by leveraging statis-
tical properties of the spatial data to obtain a default view for
highlights.
Performance. Another limitation is the medium-size datasets
to be processed. Our algorithm processes similarity and diversity
in an O(n2) complexity. Also Quickhull [19] uses a divide and
conquer approach similar to that of Quicksort, and its worst com-
plexity is O(n2). While processing a 10K-POI dataset is straight-
forward in our framework, we plan to experiment with larger
datasets in the future by improving our algorithms towards better
performance. Another direction for future work is to consider
experiments which measure the quantitative and qualitative in-
fluence of each component separately.

8 CONCLUSION
In this paper, we present an approach to explore Interesting
Dense Regions (IDRs) using implicit feedback in order to detect
user latent preferences. The implicit feedbacks are captured from
mouse moves of users over the geographical map while analyzing
spatial data. We formalize a novel polygon-based mining algo-
rithm which returns a few highlights in-line with user’s implicit



preferences. The highlights enable users to focus on what matters
the most and prevent information overload.

We consider various future directions for this work, including
the limitations of our current approach which we listed in Sec-
tion 7. First, we are interested to incorporate an “explainability”
component which can describe causalities behind preferences.
For instance, we are interested to find seasonal patterns to see
why the preferences of users change from place to place during
various seasons of the year. Another direction is to incorporate
“Query by Visualization” approaches, where users can specify
their intents alongside their implicit preferences, directly on the
map [40].
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