
Fast Adaptation of Deep Reinforcement Learning-Based Navigation
Skills to Human Preference

Jinyoung Choi1, Christopher Dance2, Jung-eun Kim1, Kyung-sik Park1, Jaehun Han1, Joonho Seo1, Minsu Kim1

Abstract— Deep reinforcement learning (RL) is being actively
studied for robot navigation due to its promise of superior
performance and robustness. However, most existing deep RL
navigation agents are trained using fixed parameters, such as
maximum velocities and weightings of reward components.
Since the optimal choice of parameters depends on the use-
case, it can be difficult to deploy such existing methods in a
variety of real-world service scenarios. In this paper, we propose
a novel deep RL navigation method that can adapt its policy
to a wide range of parameters and reward functions without
expensive retraining. Additionally, we explore a Bayesian deep
learning method to optimize these parameters that requires
only a small amount of preference data. We empirically show
that our method can learn diverse navigation skills and quickly
adapt its policy to a given performance metric or to human
preference. We also demonstrate our method in real-world
scenarios.

I. INTRODUCTION

Recently, deep reinforcement learning (RL) approaches
to autonomous navigation have been actively studied. Such
studies have reported higher performance compared with
traditional methods [1] and better robustness to changes
in the environment [2]. However, most existing deep RL
methods are trained using fixed values for parameters such as
the robot’s maximum velocity and the weightings expressing
the trade-off between reward components (for instance, fol-
lowing a short path to the goal versus keeping a large safety
distance). These parameters are often hand-engineered [3]
or optimized based on simple criteria such as the number of
waypoints reached [1].

This can be problematic in many real-world scenarios
since the desirable robot behavior varies with the use-case.
For example, robots deployed in hospital wards must be
cautious to avoid collisions with delicate equipment and in
order to not scare patients, whereas the top priority for a
warehouse robot can be to arrive at a goal as soon as possible.
Existing methods, which are trained with fixed parameters,
cannot meet such diverse requirements and would need

1NAVER LABS, Gyeonggi-do, 13494, South Korea
2NAVER LABS Europe, 6 chemin de Maupertuis, Meylan, 38240, France
1jy-choi@naverlabs.com
2christopher.dance@naverlabs.com

c©2020 IEEE. To appear in ICRA, 2020. Personal use of this material
is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Fig. 1. Demonstration of the trained agent in a real-world cafe environment

retraining to fine-tune them to each scenario. Furthermore,
the desirable behavior of robots that interact with humans
often depends on human preferences, which can be expensive
to collect. Therefore, one needs not only agents that can
adapt to diverse parameters but also a way to accurately
predict near-optimal parameters quickly from small amounts
of human preference data.

This paper presents a novel solution to these problems
with the following main contributions:
• We propose a deep RL method that learns navigation

policies that adapt to a wide range of reward weightings
and other navigation parameters;

• We propose a method for navigation-parameter opti-
mization, based on Bayesian deep learning, that requires
only small amounts of preference data; and

• We provide empirical evidence that these methods
together enable quick adaptation of navigation skills
resulting in superior user satisfaction.

The next sections discuss related work and introduce our
methods. Experimental results and conclusions follow.

II. RELATED WORK

A. Autonomous Navigation Using Deep RL

Deep RL-based robot navigation is being actively studied
as it promises greater performance and robustness than
traditional approaches. [1] reported that deep RL-based nav-
igation can outperform traditional planning methods such
as artificial potential fields [4] and the dynamic window
approach [5]. [6] and [7] proposed deep RL-based multi-
robot collision avoidance and showed superior performance
compared to the widely-used ORCA algorithm [8]. [2] used
a deep RL policy as a local planner within the probabilistic
road map [9] approach to solving long-range navigation
problems, finding that the RL-based local planner could

successfully generalize to environments different from its
training environment.

Other works exploit deep RL’s representational power to
learn complex navigation tasks. [10] and [11] used large
convolutional neural networks to learn representations of
navigation goals from raw RGB images. [3] used LSTM [12]
and asymmetric architectures [13] to learn to efficiently
avoid moving obstacles in partially-observed environments.
Recently, [7] and [14] proposed deep RL-based navigation
methods that obey social norms such as right-passing rules.

Although these works show promising results, they train
with fixed navigation parameters such as maximum velocity
and reward weightings. The resulting agents are thus only
capable of navigating with fixed behavioral characteristics
such as cautiousness or speed. Since fine-tuning the policies
of deep RL agents often takes millions of training steps,
whereas traditional navigation algorithms can be tuned with-
out expensive training, this lack of flexibility limits the real-
world deployment of deep RL approaches.

In contrast, we propose a method that adapts to a wide
range of navigation parameters, overcoming this inflexibility.
Our adaptable policies differ from the policies resulting
from universal value functions [15] which only generalize
over goal states. Our policies also differ from those in so-
called reward-variable settings [16], [17] which are limited
to parameters that linearly weight reward components.

B. Hyperparameter Optimization in Deep RL

Navigation parameters such as maximum accelerations
and reward weightings have a significant effect on robot
behavior. Most previous work treats these parameters as
hyperparameters, which are hand-tuned [3], [6]. However,
such hand-tuning often requires a lot of trial and error.

To ease this problem of hyperparameter search, Au-
toRL [1] uses an evolutionary algorithm to tune both the
reward weightings and the neural network architecture so
as to maximize simple criteria such as the probability of
reaching the goal and the number of waypoints passed.
Although AutoRL greatly improves performance according
to such criteria, it runs large numbers of experiments using
massive amounts of computing power. Furthermore, as we
show in our experiments section, optimal parameters can
vary with the environment and the performance metric.

To solve this problem, we propose to first train an adapt-
able agent and then use Bayesian deep learning to quickly
optimize the parameters at test time.

C. Reinforcement Learning from Human Preferences

In complex tasks, manually-designed reward functions
often fail due to reward hacking [18], poorly specified reward
values and other difficulties [19]. Therefore, many works use
human preference to guide reward-function design.

[20] proposed to learn a reward function by regression with
a Bradley-Terry model [21] for preferences over pairs of tra-
jectories. They successfully trained agents without explicitly
specifying reward functions in Atari games. However, they
required thousands of human preference queries to ensure an

adequate coverage of the state space when fitting the reward
function, which would be prohibitive in a robotics setting.

[22] combined expert demonstrations with active gener-
ation of preference queries to reduce the required number
of queries. They successfully trained a robot arm to move
to a goal position while avoiding an obstacle with only 15
preference queries.

In this work, we reduce the number of preference queries
required by optimizing only a small number of naviga-
tion parameters, and by actively generating the queries by
combining upper-confidence bounds (UCB) [23], [24] with
Bayesian deep learning [25].

III. APPROACH

In this section, we introduce our problem formulation.
Then we discuss our novel methods to train an agent that
can adapt to diverse navigation parameters and to optimize
these parameters quickly using preference data.

A. Problem Setting
We consider a path-following navigation task, which is

similar to the one used in [1]. In this task, the agent follows
a path to a goal. The path is represented as sequence
of waypoints. When the agent reaches the last waypoint
(goal), a new goal and waypoints are given. We model
the task as a partially observed Markov decision process
(S,A,Ω,r, ptrans, pobs), with sets of states S, actions A and
observations Ω, with reward function r, and with conditional
state-transition and observation probabilities ptrans and pobs.
We use a differential two-wheeled mobile platform model for
the robot dynamics and work in a discounted episodic setting
with discount factor γ = 0.99. The process is considered to
be parameterised by a navigation parameter drawn from a
set of navigation parameters W , as we now describe.

1) Navigation Parameters: Many parameters affect the
behavior of RL navigation agents. Here, we focus on seven
such parameters and consider a navigation parameter w ∈
W ⊆ R7 to have the following components:

w = (wstop,wsocialLimit,wsocial,wmaxV,waccV,wmaxW,waccW),

where wstop is the reward in the event of a collision or
emergency stop, wsocialLimit is the minimum acceptable esti-
mated time to collision with other agents, wsocial is the reward
for violating this minimum time, and wmaxV, waccV, wmaxW,
waccW are the maximum linear speed, linear acceleration,
angular speed and angular acceleration respectively. Our goal
is to train agents that can adapt to diverse w and to efficiently
find a w that is suitable for a given use-case.

2) Observations: The agent’s observations are of the form
o = (oscan,ovelocity,oodometry,opath) ∈ Ω ⊆ R26. oscan ∈ R18

consists of scan data from a range sensor such as a lidar. We
bin the data from −180◦ to 180◦ in 20◦ intervals and take
the minimal value from each bin. The maximum distance that
the agent can perceive is 3 m. ovelocity ∈ R2 consists of the
current linear and angular velocity. The change in the robot’s
position relative to the position at the previous timestep is

oodometry = (∆x/∆t, ∆y/∆t, cos(∆θ/∆t) , sin(∆θ/∆t)) ,

Fig. 2. Neural network architectures used for adaptable policy learning (left) and utility function learning (right). FC denotes a fully-connected layer,
BayesianFC denotes a Bayesian fully-connected layer [25] and merged branches indicate concatenation. We use the same architecture (left) for the actor
and critic in SAC [26], [27] except that the ‘action’ branch is used only in the critic. Note that f (w1) and f (w2) are calculated using shared weights (right).

where ∆x, ∆y and ∆θ are changes in the robot’s xy-position
and heading relative to the previous timestep and ∆t is the
duration of one timestep. Lastly, opath = (cos(φ),sin(φ))
where φ is the relative angle to the next waypoint in the
robot’s coordinate system.

3) Actions: The action of the agent is a vector in [−1,1]2

representing the desired linear velocity of the robot nor-
malised to the interval [−0.2 m/s,wmaxV] and its angular
velocity normalized to [−wmaxW,wmaxW]. When the robot
executes this action, an angular acceleration of ±waccW is
applied, and the linear acceleration is waccV when increasing
the speed and −2 m/s2 when decreasing it.

4) Reward: The reward function r : S×A×W →R is the
sum of five components:

r = rbase +0.1rwaypointDist + rwaypoint + rstop + rsocial

in which every term has the arguments (s,a,w).
Reward rbase = −0.01 is given in every timestep to en-

courage the agent to reach the waypoint in minimum time.
We set rwaypointDist = −sign(∆d)

√
|∆d|/∆t/wmaxV, where

∆d = dt − dt−1 and dt is the Euclidean distance to the
waypoint from timestep t and ∆t is the duration of a
timestep. We use a square root to reduce the penalty for
small deviations from the shortest path that are necessary
for collision avoidance. When the distance between the agent
and the current waypoint is less than 1 m, there is a reward
of rwaypoint = 1 and the waypoint is updated.

To force the robot to keep a minimum safety distance, in
both simulation and the real world, we stop the robot by
setting the linear velocity to 0 m/s if the estimated time to
collide with an obstacle or other agent is less than 1 s or
if a collision occurs, and a reward of rstop = wstop is given.
The estimated collision time is calculated using the desired
velocity given by the current action, using obstacle points
represented by oscan, and modelling the robot as a square of
sides 0.5 m.

Reward rsocial = wsocial is given when the estimated colli-
sion time to any other agent is less than wsocialLimit seconds.
Estimated collision time is calculated as for rstop, except
that we use the position of other agents within a 3 m

Algorithm 1: Training the Adaptable Navigation
Policy

Initialize replay memory D, RL algorithm with
network parameters θRL, navigation-parameter
distribution pW , number of agents Nagent, maximum
episode length T ;

while not converged do
for agent i = 1, 2, . . . , Nagent do

Sample navigation parameter wi from pW ;
Initialize agent i with parameters wi;

end
for timestep t = 1, 2, . . . , T do

for agent i = 1, 2, . . . , Nagent do
Execute action ai

t from agent i’s policy;
Observe oi

t+1 and receive reward ri
t ;

Store transition (oi
t ,a

i
t ,r

i
t ,o

i
t+1,wi) in D;

end
Update θRL using the RL algorithm and

transition data from D;
end

end

range instead of scan data. As we do not incorporate the
other agents’ positions in the observations, the robot has
to distinguish other agents from static obstacles using the
sequence of scan data.

B. Learning Adaptable Navigation Policies

We propose a novel training method that learns a nav-
igation policy that can adapt to wide range of navigation
parameters without expensive re-training.

1) Multi-Agent Training with Randomized Parameters:
As summarized in Algorithm 1, we use decentralized multi-
agent training, similarly to [3], [6]. In each episode, multiple
agents are deployed in a shared environment. To make the
policy adaptable to diverse navigation parameters, we sample
the navigation parameter of each agent from a distribution
at the start of each episode. For the RL algorithm, we chose
soft actor-critic (SAC) [26] since several benchmarks [27]

Algorithm 2: Bayesian Optimization of the Naviga-
tion Parameter Using Preference Data

Given the trained adaptable agent πadaptable;
Initialize the Bayesian neural network parameters

θBN;
Initialize empty datasets Dparams, Dpreference;
Wnew← sample Nquery navigation parameters;
for iteration i = 1, 2, . . . , Niter do

Dparams← Dparams∪Wnew;
Calculate µ(f (w|θBN)), σ(f (w|θBN)),

UCB(w|θBN) for all w ∈ Dparams;
for query j = 1, 2, . . . , Nquery do

Sample w j
1 from the Wmean ⊆ Dparams having

Ntop highest µ(f (w|θBN));
Sample w j

2 from the WUCB ⊆ Dparams having
Ntop highest UCB(w|θBN);

Collect preference w j
win � w j

lose using
trajectories from πadaptable;

Dpreference← Dpreference∪{w j
win � w j

lose};
end
Train θBN using Dpreference for Nupdate steps;
Wrandom← sample Nsample navigation parameters;
Calculate UCB(w|θBN) for all w ∈Wrandom;
Wnew← set of w ∈Wrandom having Nquery highest

UCB(w|θBN);
end
return w ∈ Dparams having the highest µ(f (w|θBN));

show it is more sample-efficient, more stable and produces
better-performing policies than alternatives like PPO [28] and
TD3 [29].

2) Neural Network Architecture: As shown in Figure 2
(left), we give the navigation parameter of the agent as addi-
tional input to the network. To model the temporal dynamics
of an agent and its environment, we use gated recurrent units
(GRU) [30], which provide competitive performance to the
LSTM used in [3] while requiring less computation.

C. Optimizing Navigation Parameters for Human Preference

Even if we have an agent that can adapt to a wide
range of navigation parameters, the problem of finding near-
optimal navigation parameters for a given use-case remains.
Therefore, we propose a novel Bayesian approach to opti-
mizing navigation parameters using preference data. In this
paper we assess preference by pairwise comparisons, as such
comparisons are simple to elicit and they overcome many
limitations of ratings [31].

1) Preference Model: We use the Bradley-Terry
model [21] to model preferences, as in [18], [20]. The
probability that navigation parameter w1 ∈W is preferred to
w2 ∈W is modeled as

P(w1 � w2) = P(t1 � t2) = 1/(1+ exp(f (w2)− f (w1))) ,

where t1 and t2 are robot trajectories collected using w1 and
w2, w1 � w2 indicates that w1 is preferred than w2, and f :

Fig. 3. Simulator based on Unity ML-Agents [33]. Left: overview of an
episode. Right: third-person view of one of the agents. In all images, boxes
with solid color are agents and others are obstacles.

W → R is called the utility function. To facilitate accurate
preference evaluation, we collect trajectories t1 and t2 using
the same environment and waypoints. We fit utility function
f (w) to preference data and use it to predict preferences for
new navigation parameters.

2) Active Learning of the Preference Model: We learn
utility function f (w|θBN) with a Bayesian neural net-
work [25] with parameters θBN. We use its estimates of the
uncertainty of its predictions to actively generate queries,
thus minimising the number of such queries. As shown
in Algorithm 2, we train the network (Figure 2, right) to
minimize

loss(θBN) = log(1+ exp(f (wlose|θBN)− f (wwin|θBN))),

which is the negative log-likelihood of the preference model.
In each iteration, we train the network for Nupdate steps,
starting with the parameters θBN from the previous iteration.

We use a variant of upper-confidence bounds (UCB) [23],
[24], [32] to actively sample new queries, setting

UCB(w|θBN) = µ(f (w|θBN))+σ(f (w|θBN)),

where µ(f (w|θBN)) and σ(f (w|θBN)) are the mean and stan-
dard deviation of f (w|θBN) computed with Nforward forward
passes of the network. We omit the coefficient of

√
log(time)

that usually appears before the σ(f (w|θBN)) as it had no
clear benefit in our simulated experiments for the small
number of queries used.

We generate trajectories using the Nquery navigation pa-
rameters that have the highest UCB(w|θBN) among the
Nsample uniformly-sampled navigation parameters. Then, we
actively generate Nquery new preference queries. To do so, we
calculate µ(f (w|θBN)) and UCB(w|θBN) for all w ∈Dparams
where Dparams is the set of all navigation parameter we
have collected trajectory from so far. Let Wmean be the set
of samples with the Ntop highest µ(f (w|θBN)) in Dparams
and let WUCB be the set of samples with the Ntop highest
UCB(w|θBN) in Dparams. Each preference query consists of
a pair of navigation parameters (w1,w2) where w1 and w2
are sampled uniformly from Wmean and WUCB.

IV. EXPERIMENTS

In this section, we describe our training environment.
Then we evaluate the performance of the adaptable policy
and preference-based navigation-parameter optimization al-
gorithm using a synthetic preference model. Lastly, we report
the results of navigation-parameter optimization using human

TABLE I
NAVIGATION-PARAMETER BOUNDS

Name wstop wsocialLimit wsocial wmaxV waccV wmaxW waccW
Lower
bound -1 0 s -1 0.33 m/s 0.5 m/s2 0.33 rad/s 0.25π rad/s2

Upper
bound 0 4 s 0 1.2 m/s 2 m/s2 1.2 rad/s π rad/s2

TABLE II
NAVIGATION PARAMETERS OF BASELINES

Name wstop
wsocialLimit

(s) wsocial
wmaxV
(m/s)

waccV
(m/s2)

wmaxW
(rad/s)

waccW
(rad/s2)

min min
-0.1 0 0

0.33 0.5 0.33 0.25π

min mid 0.75 1.25 0.75 0.625π

min max 1.2 2 1.2 π

mid min
-0.55 2 -0.5

0.33 0.5 0.33 0.25π

mid mid 0.75 1.25 0.75 0.625π

mid max 1.2 2 1.2 π

max min
-1 4 -1

0.33 0.5 0.33 0.25π

max mid 0.75 1.25 0.75 0.625π

max max 1.2 2 1.2 π

preferences and demonstrate the resulting agent in a real-
world environment.

A. Training Environment

Our simulation environment (Figure 3) is based on Unity
ML-Agents [33]. We procedurally generate mazes and sam-
ple random starting points and goals for the navigation task.
Dijkstra’s algorithm [34] was used to generate waypoints. To
reduce the gap between simulation and the real world, we
apply simple sensor and actuator noises at each timestep.
Specifically, we add N (0,0.05) to oscan, and multiply
ovelocity and oodometry by N (1,0.05). We also add N (0,0.1)
to the angle φ when we calculate opath. The duration of a
timestep in the simulator is ∆t = 0.15 s/step.

We train the adaptable agent using Algorithm 1. For the
navigation-parameter distribution pW , we used the uniform
distribution with lower and upper bounds given in Table I.
We train Nagent = 10 agents for 300,000 weight updates. Each
episode ends at timestep 1000.

B. Performance of Adaptable Agent

Firstly we demonstrate that our adaptable agent performs
competitively with agents trained in exactly the same way,
but with the fixed navigation parameters given in Table II. We
test the agents in the three environments shown in Figure 4
(top). We deployed five agents having the same navigation
parameter and used same initial positions and waypoints
in all experiments. The length of each episode was 500
timesteps. For each baseline, we measure the sum of all
agents’ rewards over these 500 timesteps. We also measure
the performance of the adaptable agent with the same navi-
gation parameter. As shown in Table III, the adaptable agent
performed competitively, or even outperformed the baselines
with the same amount of training.

C. Navigation-Parameter Optimization with Oracle Prefer-
ence

Before testing our navigation-parameter optimization
method on human preference data, we demonstrate its per-

TABLE III
PERFORMANCE EVALUATION AGAINST BASELINES

Structured Unstructured Mixed
Baseline Adaptable Baseline Adaptable Baseline Adaptable

min min 240.43 240.15 191.38 198.44 216.41 225.93
min mid 147.51 268.32 226.07 186.28 244.23 223.22
min max 259.37 228.05 195.87 181.50 242.84 202.82
mid min 236.92 228.06 200.87 155.53 203.42 208.85
mid mid 227.55 259.93 158.98 136.63 229.10 219.36
mid max 124.44 210.00 142.64 155.47 173.77 138.87
max min 188.37 224.85 125.00 157.82 109.36 207.47
max mid 81.06 100.25 197.84 107.66 140.28 123.83
max max 68.79 186.62 104.08 80.17 54.08 33.14

Fig. 4. Layouts of simulation environments used in oracle preference
experiments (top), and human preference experiment (bottom)

formance when preferences are given by simple known
metrics. As in [18], [20] we use an oracle preference, which
always prefers the trajectory having higher total reward. We
define the following three total reward metrics to measure
the performance of trajectories of length T collected from
environments having Nagents agents:

RwaypointDist = ∑
T
t=0 ∑

Nagents
i=0 rt,i

waypointDist,

Rsocial = ∑
T
t=0 ∑

Nagents
i=0 rt,i

social, Rmixed = RwaypointDist +10Rsocial,

which are calculated with wmaxV = 1, wsocialLimit = 4,
wsocial = −1, T = 500 and Nagents = 5. For each metric, we
optimize the navigation parameter of trained adaptable agent
using Algorithm 2 with the oracle preference. Since this
is a stochastic algorithm, we ran three trials of navigation-
parameter optimization to verify its consistency.

For the hyperparameters of Algorithm 2, we found that
Nquery = Ntop = 10, Nupdate = 10000, Nsample = 3500 and
Nforward = 50 were enough to provide consistent results
across multiple trials of experiments. We used the uniform
distribution with bounds given by Table I to sample Wrandom
and initialize Wnew. We use these values for later experiments
as well, assuming that performance metrics used in this
experiment are representative of our a priori beliefs as to
what the preference function might look like.

As shown in Figure 5, we compared the performance met-
rics of adaptable agent with optimized navigation parameter
to the baselines of Table II. The adaptable agent achieved
higher or competitive performance with a small number
of preference queries. This confirms that our approach can
adapt quickly to diverse environments and metrics using only
preference data, resulting in competitive performance.

Fig. 5. Results of oracle preference experiments. Rows are results for performance metrics (RwaypointDist, Rsocial, and Rmixed from top to bottom), and
columns are results for environments (Structured, Unstructured, Mixed from left to right). Black dots are performance of baselines. The order of baseline
names match with the order of performance. Red and blue dots are performance of top 1 and mean performance of top 10 utility navigation parameters
respectively. Each red and blue dot is score for different random seed. Red and blue stars are mean of red/blue dots. Shaded red and blue boxes are standard
deviation of red/blue dots. Each iteration corresponds to 10 preference queries so values in the iteration 10 is the result from total 100 preference queries.

D. Optimizing Navigation Parameters for Human Preference

We conducted a navigation-parameter optimization exper-
iment with preference data from five human participants,
taking a cafe as environment and drink-delivery as the task.
There were three male and two female participants. Three of
the participants were robotics researchers and two were user-
experience designers. Before collecting any preference data,
we asked participants to “prefer” agents that they judge to be
better suited to that environment and task. Participants then
discussed the desired properties of such a robot. They agreed
that the robot should move at a similar speed to a walking
human, should not change the direction too frequently, and
should keep enough distance from humans.

We did 10 iterations of navigation-parameter optimization.
In each iteration, each participant evaluated two pairs of
trajectories, giving a total of 10 preference queries. Trajec-
tories were collected from the simulated cafe environment
(Figure 4, bottom). 10 agents with the same navigation
parameter were deployed in the environment and the length
of trajectory was 500. Since participants found it difficult to
perceive the speed of the robot and its proximity to obstacles
from the simulated trajectories, we additionally provided
numerical values for ovelocity, rstop, and the shortest estimated
collision time to any other agent tsocial. We also provided
cumulative values of rwaypointDist, rstop and rsocialTimeScore =
−max{0,1−tsocial/4} up to the current timestep. wmaxV = 1,
wstop =−1 were used to compute rwaypointDist and rstop.

After 10 iterations, we selected the navigation param-
eter wbest with the highest mean utility µ(f (w|θBN))
from the collected dataset. The numerical values of wbest
were wstop = −0.91, wsocialLimit = 3.53 s, wsocial = −0.99,
wmaxV = 1.04 m/s, waccV = 0.45 m/s2, w maxW = 0.38 rad/s
and waccW = 0.97π rad/s2. Then we did 30 additional pref-
erence evaluations (six per participant), pairing trajecto-
ries from the wbest with uniformly-sampled navigation pa-
rameters. We resampled trajectories from wbest for every

evaluation to prevent participants from memorizing specific
numbers or behaviors. In the additional evaluations, wbest was
preferred in 27 out of these 30 evaluations, showing that our
method successfully optimizes the policy to the participants’
preferences.

E. Real-World Experiment
To test the optimized navigation parameter wbest in the

real-world, we demonstrated the optimized policy in a real
cafe environment (Figure 1), whose layout is the same as
in the preference experiment just described. We built a
mobile robot platform with time-of-flight range sensors and
an NVIDIA Jetson AGX Xavier as its main processor. We
collected 10 trajectories using wbest and random navigation
parameters respectively. Then, we randomly matched the
videos in pairs. Working with the same five participants as
above, each participant evaluated six pairs. The additional
information given in the simulation was not given in real-
world preference evaluations. The navigation parameter wbest
was preferred in 28 out of the 30 evaluations. We refer the
reader to the supplementary material for the videos used in
this experiment.

V. CONCLUSION

In this paper, we propose a novel approach to training
deep RL-based navigation policies that can adapt to a wide
range of navigation parameters without expensive retraining,
and a Bayesian deep learning method for tuning navigation
parameters using a small number of preference evaluations
over pairs of trajectories. We demonstrated that our method
can optimize navigation parameters to maximize human
preference using only small amounts of preference data. Our
optimized agent was significantly more likely to be preferred
by users in both simulated and real-world experiments.

ACKNOWLEDGEMENT

We thank Tomi Silander for his help in writing the paper
and Naver Labs’ PDX team for participating in experiments.

REFERENCES

[1] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis,
“Learning navigation behaviors end-to-end with Au-
toRL,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 2007–2014, 2019.

[2] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia,
M. Fiser, and J. Davidson, “PRM-RL: Long-range
robotic navigation tasks by combining reinforcement
learning and sampling-based planning,” in IEEE In-
ternational Conference on Robotics and Automation
(ICRA), 2018, pp. 5113–5120.

[3] J. Choi, K. Park, M. Kim, and S. Seok, “Deep re-
inforcement learning of navigation in a complex and
crowded environment with a limited field of view,”
in IEEE International Conference on Robotics and
Automation (ICRA), 2019, pp. 5993–6000.

[4] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and
L. Tapia, “Path-guided artificial potential fields with
stochastic reachable sets for motion planning in highly
dynamic environments,” in IEEE International Con-
ference on Robotics and Automation (ICRA), 2015,
pp. 2347–2354.

[5] D. Fox, W. Burgard, and S. Thrun, “The dynamic win-
dow approach to collision avoidance,” IEEE Robotics
& Automation Magazine, vol. 4, no. 1, pp. 23–33,
1997.

[6] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and
J. Pan, “Towards optimally decentralized multi-robot
collision avoidance via deep reinforcement learning,”
arXiv preprint arXiv:1709.10082, 2017.

[7] Y. F. Chen, M. Everett, M. Liu, and J. P. How,
“Socially aware motion planning with deep reinforce-
ment learning,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017,
pp. 1343–1350.

[8] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha,
“Reciprocal n-body collision avoidance,” in Robotics
Research, Springer, 2011, pp. 3–19.

[9] K. Hauser, T. Bretl, J.-C. Latombe, and B. Wilcox,
“Motion planning for a six-legged lunar robot,” in The
Seventh International Workshop on the Algorithmic
Foundations of Robotics, 2006.

[10] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L.
Fei-Fei, and A. Farhadi, “Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learn-
ing,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 3357–3364.

[11] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building
generalizable agents with a realistic and rich 3D
environment,” arXiv preprint arXiv:1801.02209, 2018.

[12] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Computation, vol. 9, no. 8,
pp. 1735–1780, 1997.

[13] L. Pinto, M. Andrychowicz, P. Welinder, W.
Zaremba, and P. Abbeel, “Asymmetric actor critic

for image-based robot learning,” arXiv preprint
arXiv:1710.06542, 2017.

[14] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially
compliant navigation through raw depth inputs with
generative adversarial imitation learning,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2018, pp. 1111–1117.

[15] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Uni-
versal value function approximators,” in International
Conference on Machine Learning, 2015, pp. 1312–
1320.

[16] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern,
“Transfer in variable-reward hierarchical reinforce-
ment learning,” Machine Learning, vol. 73, no. 3,
p. 289, 2008.

[17] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T.
Schaul, H. P. van Hasselt, and D. Silver, “Successor
features for transfer in reinforcement learning,” in
Advances in Neural Information Processing Systems,
2017, pp. 4055–4065.

[18] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and
D. Amodei, “Reward learning from human preferences
and demonstrations in Atari,” in Advances in Neu-
ral Information Processing Systems, 2018, pp. 8011–
8023.

[19] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz,
“A survey of preference-based reinforcement learning
methods,” Journal of Machine Learning Research,
vol. 18, no. 1, pp. 4945–4990, 2017.

[20] P. F. Christiano, J. Leike, T. Brown, M. Martic, S.
Legg, and D. Amodei, “Deep reinforcement learning
from human preferences,” in Advances in Neural In-
formation Processing Systems, 2017, pp. 4299–4307.

[21] R. A. Bradley and M. E. Terry, “Rank analysis of
incomplete block designs: I. The method of paired
comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–
345, 1952.

[22] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh,
“Learning reward functions by integrating human
demonstrations and preferences,” in Proceedings of
Robotics: Science and Systems (RSS), 2019.

[23] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time
analysis of the multiarmed bandit problem,” Machine
Learning, vol. 47, no. 2-3, pp. 235–256, 2002.

[24] J.-Y. Audibert, R. Munos, and C. Szepesvári,
“Exploration–exploitation tradeoff using variance esti-
mates in multi-armed bandits,” Theoretical Computer
Science, vol. 410, no. 19, pp. 1876–1902, 2009.

[25] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D.
Wierstra, “Weight uncertainty in neural networks,”
arXiv preprint arXiv:1505.05424, 2015.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine,
“Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor,” arXiv
preprint arXiv:1801.01290, 2018.

[27] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S.
Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,

et al., “Soft actor-critic algorithms and applications,”
arXiv preprint arXiv:1812.05905, 2018.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

[29] S. Fujimoto, H. Hoof, and D. Meger, “Addressing
function approximation error in actor-critic methods,”
in International Conference on Machine Learning,
2018, pp. 1582–1591.

[30] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y.
Bengio, “On the properties of neural machine trans-
lation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

[31] G. N. Yannakakis and H. P. Martı́nez, “Ratings are
overrated!” Frontiers in ICT, vol. 2, 2015.

[32] M. Zoghi, S. Whiteson, R. Munos, and M. Rijke,
“Relative upper confidence bound for the k-armed
dueling bandit problem,” in International Conference
on Machine Learning, 2014, pp. 10–18.

[33] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H.
Henry, M. Mattar, and D. Lange, “Unity: A gen-
eral platform for intelligent agents,” arXiv preprint
arXiv:1809.02627, 2018.

[34] E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numerische Mathematik, vol. 1, no. 1,
pp. 269–271, 1959.

	Introduction
	Related Work
	Autonomous Navigation Using Deep RL
	Hyperparameter Optimization in Deep RL
	Reinforcement Learning from Human Preferences

	Approach
	Problem Setting
	Navigation Parameters
	Observations
	Actions
	Reward

	Learning Adaptable Navigation Policies
	Multi-Agent Training with Randomized Parameters
	Neural Network Architecture

	Optimizing Navigation Parameters for Human Preference
	Preference Model
	Active Learning of the Preference Model

	Experiments
	Training Environment
	Performance of Adaptable Agent
	Navigation-Parameter Optimization with Oracle Preference
	Optimizing Navigation Parameters for Human Preference
	Real-World Experiment

	Conclusion

