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Abstract Recent methods for video action recogni-

tion have reached outstanding performances on exist-

ing benchmarks. However, they tend to leverage context

such as scenes or objects instead of focusing on under-

standing the human action itself. For instance, a tennis

field leads to the prediction playing tennis irrespectively

of the actions performed in the video. In contrast, hu-

mans have a more complete understanding of actions

and can recognize them without context. The best ex-

ample of out-of-context actions are mimes, that people

can typically recognize despite missing relevant objects

and scenes. In this paper, we propose to benchmark

action recognition methods in such absence of context

and introduce a novel dataset, Mimetics, consisting of

mimed actions for a subset of 50 classes from the Kinet-

ics benchmark. Our experiments show that (a) state-of-

the-art 3D convolutional neural networks obtain disap-

pointing results on such videos, highlighting the lack of

true understanding of the human actions and (b) mod-

els leveraging body language via human pose are less

prone to context biases. In particular, we show that ap-

plying a shallow neural network with a single temporal

convolution over body pose features transferred to the

action recognition problem performs surprisingly well

compared to 3D action recognition methods.

Keywords Biases in Action Recognition, Mimes

1 Introduction

Action recognition has made remarkable progress over

the past few years (Carreira and Zisserman 2017; Fe-

ichtenhofer et al. 2019; Simonyan and Zisserman 2014;
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a mime artist playing violin

state-of-the-art result: yoga

partial context
indoor demo of surfing

misleading context
bowling mimicked by soccer players

state-of-the-art result: shooting goal (soccer)

no context

state-of-the-art result: whistling

Fig. 1 Examples where context is partial (top), absent (mid-
dle), or misleading (bottom). The first row shows someone
training indoor for surfing, with the right object but not in
a standard place. The second row shows a mime artist mim-
icking someone playing violin, but the object and the scene
are absent. The third example contain a misleading context:
soccer players are mimicking a scene of bowling on a soccer
field with a soccer ball. In all these cases, state-of-the-art 3D
CNNs fail to recognize the actions.

Wang et al. 2016). Most state-of-the-art methods (Car-

reira and Zisserman 2017; Hara et al. 2018; Tran et al.

2018) are built upon deep spatio-temporal convolutional

achitectures applied on short clips of RGB frames. These

approaches achieved impressive classification performance,

with a top-1 accuracy over 77% on the Kinetics dataset

(Kay et al. 2017), and a top-5 accuracy of more than

93%. However, the explanations behind such perfor-
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Fig. 2 Examples of training frames where humans are
masked. The context clearly suffices to guess the action para-
sailing (left) and driving tractor (right).

mances remain unclear. In particular, recent works (Li

et al. 2018; Li and Vasconcelos 2019; Jacquot et al.

2020) have shown that most datasets, and thus what

Convolutional Neural Networks (CNNs) learn, are bi-

ased by static context such as scenes and objects. For

instance, Figure 1 shows some examples where context

is only partial, absent or misleading, and that are mis-

classified by state-of-the-art 3D CNNs. In particular,

the last video taking place on a soccer field is classified

as shooting goal (soccer), regardless of the actual action

performed in the video.

To further assess the bias of existing datasets to-

wards scenes and objects, we retrain a model on Kinet-

ics after masking out all the humans in the videos, see

Figure 2. The performance of this model on the origi-

nal test set is around 65%, which is extremely high for

a model that has never seen any human at training.

This shows that scenes and objects are often sufficient

to correctly classify the actions.

While this contextual information is certainly useful

to predict human actions, it is not sufficient to truly un-

derstand what is happening in a scene. Humans have a

more complete understanding of actions and can even

recognize them without any context, object or scene.

The most obvious example is given by mime artists, see

middle row of Figure 1, who can suggest emotions or

actions to the audience using only facial expressions,

gestures and movements, but without words or con-

text. Mime as an art originates from ancient Greece

and reached its heights with sixteen century Comme-

dia dell’Arte, but it is considered one of the earliest

mediums of expressions even before the appearance of

spoken language. We claim that an intelligent system

should also be able to understand mimed actions.

To understand action in out-of-context scenarios,

i.e., when object and scene are absent or misleading

as shown in Figure 1, action recognition can only rely

on body language captured by human pose and motion.

Such a cue is leveraged in the well-established field of

3D skeleton-based action recognition, also called 3D

action recognition (Du et al. 2015b; Liu et al. 2016;

Zhu et al. 2016), that take as input sequences of 3D

pose skeletons. These methods have shown impressive

results, validating that contextual information is not

always necessary to recognize actions. However, they

are usually trained and tested on accurate and scripted

sequences of 3D human poses, captured with RGB-D

sensor (Shahroudy et al. 2016) or Motion Capture sys-

tems (Du et al. 2015b; Zhu et al. 2016) in constrained

and unrealistic environments. To the best of our knowl-

edge, 3D action recognition has never been applied to

real-world situations and videos captured in the wild.

Another of our contributions is therefore to study whether

such techniques generalize in-the-wild given current pose

detectors and can be employed in out-of-context scenar-

ios.

Recent human pose estimation methods (Mehta et al.

2017; Rogez et al. 2019), allow to estimate 3D poses

of multiple people from a single image. In this paper,

we employ LCR-Net++ (Rogez et al. 2019) to extract

human 3D pose information from videos. It has shown

robustness to challenging cases like occlusions and trun-

cations by image boundary, estimating full-body 2D

and 3D poses for every person in an image. We com-

pare three different action recognition baselines based

on these poses. The most intuitive pipeline is to de-

tect 3D human poses in every frame, build 3D pose

sequences by linking detections over time, and apply a

state-of-the-art 3D action recognition algorithm. How-

ever, such a method is likely to be sensitive to the level

of noise inherent to 3D pose estimation in the wild. The

second baseline applies graph convolutions on 2D pose

sequences, without 3D information, which might have

the advantage to be more accurate. We finally study

another approach where 1D temporal convolutions are

applied on human-level intermediate pose feature repre-

sentations from LCR-Net++. In other words, we trans-

fer the features learned for 2D-3D pose estimation to

action recognition: they typically contain information

about the human poses without explicitly representing

them as body keypoint coordinates.

Finally, to benchmark action recognition methods

in out-of-context scenarios, we introduce the Mimetics

dataset1. It contains over 700 video clips of mimed ac-

tions for a subset of 50 classes from the Kinetics dataset.

Mimetics allows to evaluate on mimed actions models

that have been trained on Kinetics. It is not meant to

be used as training data. Our claim is that systems that

supposedly try to reach human performance should be

able to recognize actions out of context as humans do

without seeing mimes at training. For further analy-

sis, we additionally annotate for each clip whether an

object gives clues on the action or not, and similarly

for the scene. We also labelled the size of the objects

1 https://europe.naverlabs.com/research/

computer-vision/mimetics/

https://europe.naverlabs.com/research/computer-vision/mimetics/
https://europe.naverlabs.com/research/computer-vision/mimetics/
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for a fine-grained analysis of the bias towards objects.

We evaluate a state-of-the-art 3D convolutional net-

work, and confirm that these models are biased towards

scenes and objects. Pose-based action recognition pro-

vides a more interpretable output but can lack fine-

grained pose details, e.g ., face and hands, for higher

performance.

This paper is organized as follows. After review-

ing related work in Section 2, we study the bias of

state-of-the-art action recognition datasets and mod-

els in Section 3. Section 4 then presents various pose-

based baselines and compares them on existing action

recognition datasets. Finally, Section 5 introduces the

Mimetics dataset and analyzes the performance on out-

of-context action recognition.

2 Related work

We benchmark action recognition approaches, compar-

ing standard CNNs on RGB clips with pose-based meth-

ods. This latter category can be further split into 2D

pose-based approaches and 3D action recognition.

Action classification in real-world videos. Differ-

ent strategies have been deployed to handle video pro-

cessing with CNNs such as two-stream architectures (Fe-

ichtenhofer et al. 2016; Simonyan and Zisserman 2014),

Recurrent Neural Networks (RNNs) (Donahue et al.

2015), or spatio-temporal 3D convolutions (Carreira and

Zisserman 2017; Feichtenhofer et al. 2019; Tran et al.

2015). Simonyan and Zisserman (2014) introduced a

two-stream architecture with 2D convolutions, in which

one stream captures appearance information from RGB

inputs while the second one operates on optical flow

representation and models motion. While improvements

of this approach have been proposed (Feichtenhofer et al.

2016), most state-of-the-art methods now use a 3D deep

convolutional network (Carreira and Zisserman 2017;

Tran et al. 2015, 2018; Xie et al. 2018), optionally in

combination with a two-stream architecture. Compared

to 2D convolutions, 3D convolutions allow to leverage

spatio-temporal information at the cost of a higher num-

ber of parameters and higher computational cost. With

recent very large-scale datasets such as Kinetics (Kay

et al. 2017), it is possible to train such 3D CNNs effec-

tively (Hara et al. 2018), and impressive performances

can be obtained even on small datasets, thanks to pre-

training on Kinetics (Carreira and Zisserman 2017). For

instance, I3D (Carreira and Zisserman 2017) achieved

state-of-the-art accuracy on HMDB51 (Kuehne et al.

2011) and UCF101 (Soomro et al. 2012) using a two-

stream network with a 3D Inception backbone Szegedy

et al. (2015). Tran et al. (2018) and Xie et al. (2018) re-

placed 3D convolutions with separate spatial and tem-

poral convolutions, which reduces the number of param-

eters to learn. However, all these methods lack a clear

understanding of their classification choices. In partic-

ular, recent studies (Li et al. 2018; Li and Vasconcelos

2019) suggest that they tend to leverage dataset biases

instead of focusing on the human action.

2D pose for action classification in real-world

videos. An insightful diagnostic to understand what

affects the action recognition results most was provided

by Jhuang et al. (2013), who found that high-level 2D

pose features greatly outperform low/mid level features.

This has motivated further research on incorporating

2D body poses information in real-world action recog-

nition models (Angelini et al. 2018; Chéron et al. 2015;

Du et al. 2017; Iqbal et al. 2017; McNally et al. 2019;

Zhu et al. 2018). For instance, this can be done by pool-

ing features (Cao et al. 2016; Chéron et al. 2015) or

defining an attention mechanism (Du et al. 2017; Gird-

har and Ramanan 2017). However, this leads to limited

gain and often assumes that humans are fully-visible.

Zolfaghari et al. (2017) trained a 3D CNN on human

part segmentation inputs, and added a third stream

to two-stream networks. Some other recent methods

have shown improved action recognition performance

by incorporating 2D pose information from off-the-shelf

pose detectors (Choutas et al. 2018; Liu and Yuan 2018;

Wang et al. 2018). For instance, Choutas et al. (2018)

and Liu and Yuan (2018) extract joint heatmaps and

encode their evolution over time. Wang et al. (2018)

define a two-stream network: one stream encodes the

evolution of the pose while the second one models re-

lationship with objects. However, it remains limited to

single-person action recognition. Luvizon et al. (2018)

propose a multi-task architecture where 2D poses are

predicted at the same time as appearance features are

pooled over body joints for action recognition.

3D action recognition. Compared to 2D poses, 3D

poses have the advantage to be unambiguous and to

better handle motion dynamics. Recent attempts on

3D action recognition have employed RNNs to handle

sequential data and to model the contextual dependen-

cies in the temporal domain (Du et al. 2015b; Liu et al.

2016; Si et al. 2018; Weng et al. 2018; Zhu et al. 2016).

Du et al. (2015b) propose a hierarchical RNN in which

the human skeleton was divided into five parts (arms,

legs and trunk) to feed five different subnets later fused

hierarchically. Zhu et al. (2016) added a mixed-norm

regularization term to a RNN cost function in order

to learn the co-occurrence features of skeleton joints

for action classification. More recently, simple CNN-

based methods applied to the 2D or 3D joint coordi-

nates have shown to outperform more complex RNN

architectures (Du et al. 2015a). In a similar spirit, Yan
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et al. (2018) represent the sequence of poses as a graph,

and apply a spatio-temporal graph convolutional net-

work (STGCN) to recognize actions. Most of these al-

gorithms use 3D human poses obtained from a Motion

Capture system (Du et al. 2015b; Zhu et al. 2016), a

Kinect sensor (Liu et al. 2016) or a multi-camera set-

ting (Yao et al. 2012), and none of them experimented

on real-world videos with estimated 3D poses.

To the best of our knowledge, we are the first to

analyze 3D action recognition in real-world videos. Yan

et al. (2018) show that their STGCN method can also

be applied in the wild, but they only use 2D poses in

this scenario. More precisely, they extract 2D human

poses with OpenPose (Cao et al. 2018), build a graph

using the 2 highest-scored detections per frame, and

apply their spatio-temporal graph network, replacing

X,Y,Z coordinates of the 3D poses, by x, y, s, where

x, y are the 2D coordinates of the joint, normalized into

[−0.5, 0.5] and s is the score for this keypoint. In the

framework of Luvizon et al. (2018), the multi-task ar-

chitecture can deal with 2D and 3D poses at the same

time as action recognition. However, ground-truth key-

points are required for training, and the 3D compo-

nent is disabled for datasets in-the-wild, i.e., without

3D ground-truth poses.

3 Context biases in action recognition

To assess how much context is leveraged by current

methods based on spatio-temporal CNNs, we consider

videos where people are masked out. To do so, we ex-

tracted human tubes in all videos using LCR-Net++ (Ro-

gez et al. 2019) detections linked over time (see Sec-

tion 4.1 for a detailed description) and removed all the

humans from the video frames by coloring the tubes

content in grey, see Figure 2.

We performed this experiment on the standard Ki-

netics dataset (Kay et al. 2017) which consists of around

240k training videos, 20k for validation and 40k for test-

ing for a total of 400 classes. As a state-of-the-art model,

we use a 3D CNN model, i.e., with spatio-temporal con-

volutions instead of 2D convolutions, using a ResNeXt-

101 backbone (Xie et al. 2017). We first evaluate a 3D

CNN trained on original videos and tested on masked

videos, thus measuring the biases learned by the model.

Mean top-1 accuracy on the validation set is reported

in Table 1. It remains close to 40%, which is extremely

high given that there is no human from which the action

can be recognized in the test videos. This prediction is

thus based on the remaining content of the video, i.e.,

context such as objects or scenes.

To better measure the biases of the dataset itself,

we have trained a 3D CNN model on the masked videos

Table 1 Mean top-1 accuracy (in %) when training and test-
ing a 3D CNN model on Kinetics using the original videos or
videos where humans are masked

test on
original masked

train on
original 74.5 38.7
masked 65.7 63.9

Table 2 Classes with the most increase in accuracy (in %)
on Kinetics validation set when training on original videos
or masked videos. The last column highlights the difference
between these two settings.

class original masked diff.
building shed 74.5 85.1 +10.6

long jump 62.0 72.0 +10.0
driving tractor 68.1 76.6 +8.5
riding elephant 86.0 94.0 +8.0

tying knot (not on a tie) 64.0 72.0 +8.0
playing basketball 66.0 74.0 +8.0

changing oil 85.7 91.8 +6.1
planting trees 77.6 83.7 +6.1

peeling potatoes 59.2 65.3 +6.1
parasailing 82.0 88.0 +6.0

and obtain 65.7% on the original videos, down by only

8.8% compared to training on the original data. This

performance is outstanding for a model that has not

seen any human during training, and therefore has not

really seen any action. To further analyze this aspect,

we additionally show in Table 2 the classes with the

most increase of accuracy. Masking the actors at train-

ing increases the accuracy for classes in which the scene

context (e.g . long jump, playing basketball) or the pres-

ence of large objects (e.g . driving tractor) are sufficient

to recognize the actions, see also Figure 2.

Such bias problem can be tackled by sampling over

multiple datasets or reweighting samples, as shown for

action (Li et al. 2018; Li and Vasconcelos 2019) or ob-

ject recognition (Bahng et al. 2019; Khosla et al. 2012;

Torralba et al. 2011). For action recognition, another

direction is to leverage body language which is not af-

fected by this context bias.

4 Real-world 3D action recognition baselines

We benchmark three baselines, that all require the ex-

traction of human tubes (Section 4.1). We present two

different methods that employ a spatio-temporal graph

convolutional network, on explicit 3D (Section 4.2) or

2D (Section 4.3) pose sequences respectively. Next, we

introduce a third approach that consists of a single 1D

temporal convolution applied on mid-level implicit pose

features (Section 4.4). Finally, we present experimental

results on existing benchmarks in Section 4.5.



Mimetics: Towards Understanding Human Actions Out of Context 5

4.1 Extracting human tubes

Overview of LCR-Net++. We build our tube ex-

traction and pose estimation upon LCR-Net++ (Ro-

gez et al. 2019), which leverages a Faster R-CNN like

architecture (Ren et al. 2015) with a ResNet-50 back-

bone (He et al. 2016). A Region Proposal Network ex-

tracts candidate boxes around humans. These regions

are then classified into different so-called ‘anchor poses’

that replace standard object classes: these key poses

typically correspond to a person standing, a person

sitting, etc. Poses are then refined using a regression

branch, that takes as input the same features used for

classification. Anchor-poses are defined jointly in 2D

and 3D, and the refinement occurs in this joint 2D-3D

pose space. The detection framework allows to handle

multiple people in a scene. As the approach is holistic,

it outputs full-body poses, even in case of occlusions or

truncation by image boundaries. We use the real-time

model released by the authors2, allowing experiments

on large-scale datasets.

Tube extraction. In order to leverage the evolution

of poses over time, one needs to track each individ-

ual, i.e., to obtain human tubes (Gkioxari and Ma-

lik 2015). We proceed by first running LCR-Net++

in every frame and follow standard procedures used in

the spatio-temporal action localization literature (Kalo-

geiton et al. 2017; Singh et al. 2017) to link detections

over time. Starting from the highest scored detection,

we match it with the detections in the next frame based

on the Intersection-over-Union (IoU) between boxes.

We link it if the IoU is over 0.3. Otherwise, we match

it to the frame after, and perform linear interpolation

in the missing frames. We stop a tube if there was no

match during 10 consecutive frames. This procedure is

run forward and backward to obtain a human tube. We

then delete all detections in this first link, and repeat

the procedure for the remaining detections. At training,

we label the tubes with the video class. At test time,

for each video and for each class, we take the maximum

score over all tubes.

4.2 Baseline based on explicit 3D pose

Figure 3 shows an overview of the most intuitive base-

line. It is based on explicit 3D pose information. More

precisely, given the human tubes, we extract the 3D

poses estimated by LCR-Net++ for each box, thus build-

ing a 3D pose skeleton sequence for each tube. We fi-

nally run a state-of-the-art 3D action recognition method,

namely STGCN, using the code released by Yan et al.

2 http://thoth.inrialpes.fr/src/LCR-Net/

LCR-Net++
features

2D/3D pose
estimation

LCR-Net++

LCR-Net++
features

2D/3D pose
estimation

LCR-Net++
features

2D/3D pose
estimation

spatio-temporal
graph neural network

action scores

basketball

3D pose
sequence

graph

Fig. 3 Overview of the STGCN3D baseline. Given an input
video, we run LCR-Net++ to detect human tubes (yellow
and red boxes) and estimate 2D/3D poses (shown only for the
yellow tube for readability). We build 3D pose sequences and
run a state-of-the-art 3D action recognition method based on
spatio-temporal graph neural network (Yan et al. 2018) to
obtain action scores.

(2018)3. The idea consists in building a graph in space

and time from the pose sequence, on which spatio-temporal

convolution are applied. We denote this first baseline as

STGCN3D.

4.3 Variant based on explicit 2D pose

As the STGCN method of Yan et al. (2018) has also

been applied to 2D poses, we use a variant of the previ-

ous pipeline, replacing the 3D poses estimated by LCR-

Net++ by its 2D poses. On the one hand, this variant is

likely to get worse performance, as 3D poses are more

informative than 2D poses which are inherently am-

biguous. But on the other hand, 2D poses extracted

from images and videos tend to be more accurate than

3D poses which are more prone to noise. We call this

second baseline STGCN2D.

4.4 Temporal convolution on implicit pose features

We finally study a baseline that transfers the implicit

pose representation carried by mid-level features within

LCR-Net++, without using explicit body keypoint co-

ordinates, see Figure 4. We select the features used as

input to the final layers for pose classification and re-

finement. These features have 2048 dimensions with a

ResNet50 backbone and carry information about both

2D and 3D poses. The features are stacked over time

along human tubes and a temporal convolution of ker-

nel size T is applied on top of the resulting matrix. This

convolution outputs action scores for the sequence.

At training, we sample random clips of T consecu-

tive frames and use a cross-entropy loss. At test time,

we use a fully-convolutional architecture and average

the class probabilities by a softmax on the scores for

all clips in the videos. We did experiment with deeper

network on top of the stacked features but did not see

3 https://github.com/yysijie/st-gcn

http://thoth.inrialpes.fr/src/LCR-Net/
https://github.com/yysijie/st-gcn
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LCR-Net++
features

LCR-Net++
features

LCR-Net++
features

action scores

basketball
1D temporal
convolution

Fig. 4 Overview of the implicit pose baseline, SIP-Net.
Given an input video, we run LCR-Net++ to detect humans
tubes (yellow and red boxes) and extract mid-level pose fea-
tures (shown only for the yellow tube for readability). We
stack them over time and apply a single 1D temporal convo-
lution to obtain action scores.

Table 3 Overview of the datasets used in our experiments

#cls #vid #splits in-the-wild GT 2D GT 3D
NTU 60 56,578 2 7 3 3

JHMDB 21 928 3 3 3
PennAction 15 2,326 1 3 3
HMDB51 51 6,766 3 3
UCF101 101 13,320 3 3
Kinetics 400 306,245 1 3

any significant improvement. Due to GPU memory con-

straint, we freeze the weights of LCR-Net++ during

training, allowing larger temporal windows to be con-

sidered. We denote this third baseline as SIP-Net for

Stacked Implicit Pose Network.

4.5 Comparison on existing datasets

Before comparing these baselines on out-of-context ac-

tions (Section 5), we assess their performance for real-

world action recognition on existing datasets, with var-

ious levels of ground-truth. Table 3 summarizes them

in terms of number of videos, classes, splits, as well as
frame-level ground-truths. For datasets with multiple

splits, some results are reported on the first split only,

denoted for instance as JHMDB-1 for the split 1 of JH-

MDB. While our goal is to perform action recognition in

real-world videos, we validate the baselines on the con-

strained NTU 3D action recognition dataset (Shahroudy

et al. 2016) that contains ground-truth poses in 2D

and 3D, using the standard cross-subject (cs) split. We

also experiment on the JHMDB (Jhuang et al. 2013)

and PennAction (Zhang et al. 2013) datasets that have

ground-truth 2D poses, but no 3D poses. Finally, we

use HMDB51 (Kuehne et al. 2011), UCF101 (Soomro

et al. 2012) and Kinetics (Kay et al. 2017) that con-

tain no more information than the ground-truth label

of each video. As metric, we report the standard mean

accuracy, i.e., the ratio of correctly classified videos per

class, averaged over all classes.

In Appendix A, we report various experiments based

on this various levels of ground-truth, allowing to study

the impact of extracted tubes, extracted poses as well

as the benefit of transferring pose features for SIP-Net.

We also plot the performance of SIP-Net with varying

T and use T = 32 in the remaining of this work.

Table 4 provides a comparison of the mean accuracy

on all datasets (last three rows). The method based

on implicit pose features (SIP-Net) significantly out-

performs the baselines that employ explicit 2D and

3D poses, except on NTU. The gap is over 10% on

HMDB51, UCF101 and Kinetics. This can be explained

by the fact that explicitly extracting the poses lead to

a significant level of noise in the body keypoint repre-

sentations for in-the-wild videos. Using an implicit pose

representation as in SIP-Net allows for more robustness.

Interestingly, on HMDB51, UCF101 and Kinetics, the

2D pose baseline performs slightly better than the 3D,

suggesting that 3D pose suffers from much more noise

in unconstrained videos.

Finally, we compare our baselines to the state of the

art among pose-based methods, see Table 4. SIP-Net

obtains a higher accuracy than PoTion (Choutas et al.

2018) with a margin over 5% on JHMDB, HMDB51 and

UCF101-1, and of 16% on Kinetics. Compared to the

pose model only of Zolfaghari et al. (2017), we obtain

a higher accuracy on JHMDB, HMDB51 and UCF101.

On NTU and PennAction, Luvizon et al. (2018) obtain

a higher accuracy because their approach also leverages

appearance features. When combining SIP-Net with a

standard RGB stream using 3D ResNeXt-101 backbone,

we obtain 98.9% on PennAction. Finally, as in (Yan

et al. 2018), we run STGCN code on 2D poses detected

by OpenPose (Cao et al. 2018). We significantly outper-
form this approach on JHMDB, PennAction, HMDB51

and UCF101. On Kinetics, the gap is much smaller,

with only 2%. This dataset contains many videos with

very near close-ups on faces or captured from a first-

person viewpoint, which leads to a large number of mis-

detections by LCR-Net++ that has not been trained in

such conditions. For videos where only the face is vis-

ible, OpenPose that outputs 18 keypoints including 5

on the head (nose, two ears, two eyes) is able to detect

a pose. In contrast, LCR-Net++ that estimates only

1 (out of 13) keypoint on the center of the head, fails

to detect humans in such cases. Table 5 shows the 10

classes with the highest and lowest accuracy for SIP-

Net. Classes with high top-1 accuracy can be clearly

recognized from body pose only. In contrast, the classes

at 0% are either actions often captured in first-person

viewpoint where the poses are not detected (making a

cake), or classes with no motion of the body keypoint

as they mainly contain motion of the face (sniffing) or

the hands (drumming fingers).
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Table 4 Mean accuracies (in %) for our three baselines on all datasets, and for state-of-the-art pose-based approaches

JHMDB-1 JHMDB PennAction NTU (cs) HMB51-1 HMDB51 UCF101-1 UCF101 Kinetics

PoTion (Choutas et al. 2018) 59.1 57.0 - - 46.3 43.7 60.5 65.2 16.6
Zolfaghari et al. (2017) (pose only) 45.5 - - 67.8 36.0 - 56.9 - -
MultiTask (Luvizon et al. 2018) (uses RGB) - - 97.4 74.3 - - - - -
STGCN (Yan et al. 2018) (OpenPose) 25.2 25.4 71.6 79.8 38.6 34.7 54.0 50.6 30.7
STGCN2D 23.2 23.2 85.5 69.4 36.5 32.7 49.2 44.4 11.9
STGCN3D 53.1 50.5 89.2 75.0 39.8 41.0 48.5 51.1 10.6
SIP-Net 66.4 62.4 93.5 64.8 50.7 51.2 66.1 66.0 32.8

Table 5 Classes with the highest/lowest accuracy (in %) for
SIP-Net on Kinetics

highest top-1 accuracy lowest top-1 accuracy
crawling baby 91.8 rock scissors paper 0.0
presenting weather forecast 90.0 throwing ball 0.0
riding mechanical bull 89.8 eating chips 0.0
deadlifting 88.9 drumming fingers 0.0
surfing crowd 87.5 tossing coin 0.0
arm wrestling 87.5 sniffing 0.0
filling eyebrows 84.4 unloading truck 0.0
shearing sheep 83.7 holding snake 0.0
bench pressing 82.0 making a cake 0.0
front raises 81.6 ripping paper 0.0

5 Experiments on mimed actions

To assess the bias of action recognition algorithms to-

wards scenes and objects, and evaluate their generaliz-

ability in absence of such visual context, we introduce

Mimetics, a dataset of mimed actions.

5.1 The Mimetics dataset

Mimetics contains short YouTube video clips of mimed

human actions that mostly consist in manipulations of,

or interactions with certain objects. These include sport

actions, such as playing tennis or juggling a soccer ball,
daily activities such as drinking, personal hygiene, e.g .

brushing teeth, or playing musical instruments including

bass guitar, accordion or violin. These classes were se-

lected from the action labels of the Kinetics dataset, al-

lowing to evaluate models trained on Kinetics. Mimetics

contains 713 video clips for a subset of 50 human ac-

tion classes, i.e., an average of 14.3 clips per class. As

it is hard to find mimed actions on the web, we restrict

Mimetics to testing purposes, not for training. These

actions are performed on stage or on the street by mime

artists (middle row of Figure 1) but also in everyday life

of people, typically during mime games, or captured

and shared for fun on social media. For instance, the

top row of Figure 1 shows a video of someone training

indoor for surfing water or the bottom row shows soc-

cer players mimicking the action bowling to celebrate a

goal.

Finding videos of mimed action on YouTube is a

very difficult task. The clips for each class were ob-

tained by searching for candidates through the use of

key words such as miming or imitating followed by the

desired action, or using query words such as imaginary

and invisible followed by a certain object category. We

queried these keywords using several different languages

but this was not enough to ensure a sufficient number

of instances for all the considered action classes. To

complete the dataset, we also watched hours of videos

looking for interesting mimed actions and identifying

the clips of interest. In comparison, datasets like Ki-

netics use a semi-automatic process using a frame-level

classifier to prune the videos, this was not possible for

mimed actions as the classifiers fail. Some classes had to

be dropped due to the lack of videos. The dataset was

built making sure that a human observer was able to

recognize the mimed actions. The videos have variable

resolutions and frame rates and have been manually

trimmed between 1 and 10 seconds, following the Kinet-

ics dataset. The URLs of the original YouTube videos

and the temporal intervals of the video clips have been

shared to spur further research on this topic. The de-

tailed list of classes with the number of videos per class

is available in Appendix B.

5.2 Experimental results

We compare several approaches on the Mimetics dataset:

our three pose-based baselines, a state-of-the-art 3D

CNN method on RGB input or Flow input as well as

their late fusion, in addition to STGCN (Yan et al.

2018) with OpenPose. For optical flow input, we use

the TV-L1 algorithm (Zach et al. 2007). All methods

were trained on the 400 classes of Kinetics. We then

run them on the videos from the Mimetics dataset,

and report top-1, top-5 accuracies as well as the mean

average-precision (mAP). As each video has a single

label, average-precision computes for each class the in-

verse of the rank of the ground-truth label, averaged

over all videos of this class. Overall performances are

reported in Table 6. We refer to Appendix B for per-

class results. Figure 5 shows some qualitative examples.

We first observe that the performance is relatively

low for all methods, below 15% top-1 accuracy and

25% mAP, showing that the recognition of mimed ac-

tions is challenging. In fact, all methods completely fail
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Table 6 Mean top-k accuracies and mean average-precision
(in %) on the Mimetics dataset when training on Kinetics

top-1 top-5 mAP
RGB (3D-ResNeXt-101) 8.6 20.1 15.6
Flow (3D-ResNeXt-101) 11.8 29.6 21.1
RGB+Flow (late fusion) 10.5 26.9 19.1
STGCN (OpenPose) 12.6 27.4 20.7
STGCN2D 9.0 20.5 15.4
STGCN3D 5.8 13.8 11.3
SIP-Net 14.2 32.0 22.7

for a certain number of actions including climbing a

rope, reading newspaper, eating cake or, more surpris-

ingly, sweeping floor. One reason for this overall low

accuracy is that some Kinetics actions are fine-grained

(e.g . different classes correspond to eating various types

of food) and are hard to distinguish, especially when

mimed. Another difficulty is that mimed actions tend

to be exaggerated, some in a comical way but also to

virtually represent the object. This is particularly true

when they are performed by mime artists. For instance,

in the reading newspaper sequence of Figure 5, the artist

exaggerates the movements of the head to make peo-

ple understand that he/she is reading. These gestures

are consequently not aligned with real performances of

the actions as observed in the training videos. Inter-

estingly, a person who has never seen a mime before is

still capable of understanding what is happening and so

should an intelligent system. We manually label a flag

for each video whether the actor is a mime artist or

not, and show the global top-1 accuracy in Table 7. For

all approaches, the performance is significantly lower

on videos where actions are performed by mime artists

compared to standard people.

The best overall performance is achieved by SIP-

Net which consists of a temporal convolution applied

on pose features, reaching 14.2% top-1 accuracy and a

mAP of 22.7%. Some failure cases occur when several

people are present in the scene. The tubes can erro-

neously mix several individuals or other persons (e.g .

spectators) sometimes obtain higher scores than the one

miming the action of interest.

In comparison, state-of-the-art 3D CNN model trained

on RGB clips performs more poorly, with 8.6% mean

top-1 accuracy and 15.6 mAP. For some classes such

as archery, playing accordion, playing bass guitar, play-

ing trumpet, this state-of-the-art RGB model obtains

0% while SIP-Net performs decently. One key reason

for that is the bias learned by the model: it focuses on

the objects being manipulated or the scenes where the

video is captured more than on the performed actions.

For instance, in the second row of Figure 5, someone

mimics playing piano on a console table covered with a

tablecloth, which looks like a massage table. As a con-

Table 7 Global top-1 accuracy (in %) on various subsets of
Mimetics for models trained on Kinetics

(#vid.) RGB Flow SIP-Net
all videos (713) 8.4 11.5 14.3
mime artist (203) 4.9 6.4 5.4
not a mime artist (510) 9.8 13.5 17.8
no object is relevant (644) 6.8 9.8 13.4
scene is not relevant (644) 6.4 9.8 13.5
no object is relevant, and scene is not relevant (584) 4.5 8.0 12.7

Table 8 Global top-1 accuracy (in %) for classes with
no/small object and with large objects

#cls. (#vid.) RGB Flow SIP-Net
all classes 50 (713) 8.4 11.5 14.3
no/small object 19 (268) 11.2 12.3 9.0
large object 31 (445) 6.7 11.0 17.5

sequence, the RGB model predicts the action massage

back without considering what the person is really do-

ing. To further verify the bias towards object and scene,

we manually label for each video if there is any relevant

object or not, and if the scene is relevant for the action.

We report the global top-1 accuracy (as some classes

have no video or just a few, global accuracy is better

suited than mean per-class accuracy) in Table 7 for the

subset of videos where there is no relevant object, where

the scene is not relevant or both. On these videos, the

performance of the state-of-the-art RGB 3D CNN sig-

nificantly drops while the SIP-Net baseline is more ro-

bust. RGB 3D CNN still performs better than SIP-Net

on classes such as brushing teeth, catching or throwing

baseball, or juggling balls. This corresponds to classes

in which the object is barely visible in most training

videos, either too small (e.g . cigarette for smoking) or

mostly occluded by hands (baseball ball, toothbrush,

hair brush). In such cases, 3D CNN model focuses on

face and hands (for brushing teeth, smoking) or on the

body (throwing baseball) and therefore performs rea-

sonably well on these mimed actions. To further verify

this, we manually annotate for each of the 50 classes of

Mimetics whether there is an object being manipulated

or not, and if it is small or large. We report the global

top-1 accuracy in Table 8. RGB performs better than

SIP-Net on actions with no object or with small ob-

jects, while SIP-Net clearly outperforms RGB in case

of large objects.

We then also evaluate a similar 3D CNN that takes

as input optical flow clips instead of RGB clips. The

overall performance is higher than RGB, with 11.8%

top-1 accuracy and 21.1% mAP. This suggests that this

flow model learns less biases than RGB, because it does

not see the appearance of the scenes and objects. For

instance, playing piano is correctly predicted in the ex-

ample of the second row of Figure 5, because from the

optical flow, a piano and a covered table roughly look

the same. Sevilla-Lara et al. (2018) suggest that flow
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playing piano
SIP-Net: playing piano

RGB: massage back

Flow: playing piano

golf driving

SIP-Net: golf driving

RGB: tai chi

Flow: side kick

SIP-Net: shooting goal (soccer)

RGB: playing badminton

Flow: dancing ballet

shooting goal (soccer)

reading newspaper

SIP-Net: stretching arms

RGB: robot dancing

Flow: robot dancing

Fig. 5 Four video examples from Mimetics with the highest scored class for the SIP-Net, RGB 3D CNN and Flow 3D CNN

may still capture global shape of the actor or objects.

This explains why flow performs better on classes with-

out object or with small objects compared to larger

objects, see Table 8, as RGB does: when the subject

is manipulating small objects, the network is not able

to capture these details and it focuses on bigger struc-

ture like the person, thus generalizing better to out-of-

context actions. We evaluated in Table 6 a late fusion

of RGB and Flow, i.e., a two-stream model (Simonyan

and Zisserman 2014), and observe a small decrease of

performance as both models tend to perform well on

the same kind of classes and videos.

Next, we also benchmark other pose-based approaches.

Our two baselines based on explicit 2D or 3D poses per-

form quite poorly, comparably to their respective per-

formance on the Kinetics dataset. This can be explained

by the difficulty to extract accurate body keypoint coor-

dinates for videos in-the-wild with abrupt camera and

actor motion, blur, and occlusions. In particular, the

low performance on Kinetics itself suggests this occurs

also in the training set, leading to a poor model. We

also compare to STGCN (Yan et al. 2018) that uses

OpenPose to estimate the pose, i.e., with more key-

point on the head than LCR-Net++. The performance

is higher with 12.6% top-1 accuracy but remains lower

than the SIP-Net baseline that does not explicitly com-

pute poses but transfers the learned pose features to

action recognition.

To explain the relatively poor performance of all

methods, we argued that Kinetics classes might be too

fine-grained and too difficult to distinguish when mimed.

This is illustrated by the significantly higher top-5 ac-

curacy (32.0%) than top-1 accuracy (14.2%), see Ta-

ble 6. To further verify this statement, we trained a

SIP-Net model on the Kinetics training videos from the

50 classes of Mimetics and report the results in Table 9.

Top-1 accuracy increases to more than 25% and top-5

accuracy to more than 50%.

6 Conclusion

In this paper, we have highlighted the context biases of

existing action recognition datasets and 3D CNN mod-

els. To benchmark performances on out-of-context ac-
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Table 9 Mean top-k accuracies and mAP (in %) of SIP-Net
on the Mimetics dataset when training on the full Kinetics
training set, or on the subset of classes from Mimetics

training set top-1 top-5 mAP
Kinetics (400 classes) 14.2 32.0 22.7
Kinetics subset (50 classes) 25.1 51.4 38.3

tions, we have introduced the Mimetics dataset. Our ex-

periments show that models leveraging body language

via human pose are less prone to the context biases. Ap-

plying a shallow neural network such as a single convo-

lution over features transferred from human poses per-

forms surprisingly well compared to 3D action recog-

nition applied in-the-wild. Our analysis shows that us-

ing a sparse set of keypoints might not be sufficient

to distinguish some fine-grained actions. Using a more

complete representation of human poses including full-

body, hands, and face dense pose information, as pre-

dicted by recent works in human pose/shape estimation

could significantly increase the performance.

We think that our new Mimetics benchmark will al-

low to better understand what action recognition mod-

els learn and is a step towards designing more intelligent

systems. We hope it will stimulate research into the par-

ticular challenges of out-of-context action recognition.

Estimating the performance of future action recognition

methods on our Mimetics dataset could help bringing

additional analysis on their similarity to human perfor-

mance but it could also help evaluate their capability

to detect/ignore mimes. Ideally, an action recognition

system should solve both the problems of recognizing a

human action, and identifying whether it is mimicked

or not (fake or real). Our work also allows to make a

step toward this goal by showing how much state-of-the-

art action recognition systems can be fooled by mimes.

This particularly occurs when the context is partial, see

the second case in Figure 5 classified as ‘massage back’.

The mistakes made by these models in such scenarios

are harmful for their real-life deployments.
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A Extended experiments on existing datasets

In this section, we provide more analysis about the perfor-
mance of the three pose-based baselines on existing action
recognition datasets. We first perform a parametric study of
SIP-Net in Section A.1. We then use the various levels of
ground-truth (see Table 3 of the main paper) to study the
impact of using ground-truth or extracted tubes and poses
(Section A.2).

Tubes. For datasets with ground-truth 2D poses, we compare
the performance when using ground-truth tubes (GT Tubes)
obtained from GT 2D poses, or estimated tubes (LCR Tubes)
built from estimated 2D poses, see Section 4.1 of the main
paper. In the latter case, tubes are labeled positive if the
spatio-temporal IoU with a GT tube is over 0.5, and negative
otherwise. When there is no tube annotation, we assume that
all tubes are labeled with the video class label. Note that in
some videos, no tube is extracted, in which case the videos are
ignored when training, and considered as wrongly classified
for test videos. In particular, this happens when only the
head is visible, as well as for many clips with first person
viewpoint, where only one hand or the main manipulated
object is visible. We obtain no tube for 0.1% of the videos on
PennAction, 2.5% on JHMDB, 2.7% on HMDB51, 6.7% on
UCF101 and 15.3% on Kinetics.

A.1 SIP-Net baseline

We first present the results for the SIP-Net baseline with GT
tubes (blue curve ‘GT tubes, Pose Feats’) and LCR tubes
(green curve ‘LCR Tubes, Pose Feats’) on all datasets for
varying clip length T , see Figure 6. Overall, a larger clip size T
leads to a higher classification accuracy. This is in particular
the case for datasets with longer videos such as NTU and
Kinetics. This holds both when using GT tubes (blue curve)
and LCR tubes (green curve). We keep T=32 in the remaining
of this paper.

Next, we measure the impact of applying transfer learn-
ing from the pose domain to action recognition. To this end,
we compare the temporal convolution on LCR pose features
(blue curve, ‘Pose Feats’), to features extracted from a Faster
R-CNN model with ResNet50 backbone trained to classify
actions (red curve, ‘Action Feats’). This latter method is
not supposed to be state-of-the-art in action recognition, but
it allows to fairly compare the pose features to action fea-
tures, keeping the network architecture exactly the same,
simply changing the learned weights. Note that such a frame-
level action detector has been used in the spatio-temporal ac-
tion detection literature (Saha et al. 2016; Weinzaepfel et al.
2015), before the rise of 3D CNNs. Results in Figure 6 show
a clear drop of accuracy when using action features instead
of pose features: about 20% on JHMDB-1 and PennAction,
and around 5% on NTU for T=32. Interestingly, this holds
for T=1 on HMDB-1 and PennAction, i.e., without tempo-
ral integration, showing that ‘Pose feats’ are more powerful.
To better understand why using pose features considerably
increases performance compared to action features, we visu-
alize the distances between features inside tubes in Figure 7.
When training a per-frame detector specifically for actions,
most features of a given tube are correlated. It is therefore
hard to leverage temporal information from them. In contrast,
LCR-Net++ pose features considerably change over time, as
does the pose, deriving greater benefit from temporal integra-
tion. Figure 8 shows confusion matrices on PennAction when
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Fig. 6 Mean-accuracy of SIP-Net for varying T on all
datasets, for different tubes (GT or LCR) and features (Pose
or Action).

Action ActionPose Pose

swing baseball tube bench press tube

Fig. 7 Feature correlation for two different videos of Pen-
nAction (action swing baseball on the left and bench press
on the right). For each sequence, we show the distances be-
tween features along the tube when using Faster R-CNN ac-
tion or LCR pose features. Blue/red color indicates low/high
distances and therefore high/low correlation. Implicit pose
features clearly show more variation inside a tube.

using ‘Pose feats’ (left) vs. ‘Action feats’ (right). With ‘Ac-
tion feats’, confusions happen between the two tennis or the
two baseball actions, while this is disambiguated with ‘Pose
feats’.

A.2 Comparison between baselines

We compare the performance of the baselines using GT and
LCR tubes, on the JHMDB-1, PennAction and NTU datasets
in Table 10. On JHMDB-1 and PennAction, despite being a
much simpler architecture, the SIP-Net baseline outperforms
the methods based on explicit 2D-3D pose representations,
both with GT and LCR tubes. Estimated 3D pose sequences
are usually noisy and may lack temporal consistency. We also
observe that the STGCN3D approach significantly outper-
forms its 2D counterpart (STGCN2D), confirming that 2D
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Fig. 8 Confusion matrices on PennAction when using action
features (left) and pose features (right) in SIP-Net.

Table 10 Mean accuracies (in %) for our three baselines on
datasets with GT tubes, or when using LCR tubes

Method Tubes JHMDB-1 PennAction NTU (cs)
STGCN2D

GT
34.9 90.8 66.3

STGCN3D 57.9 94.7 74.8
SIP-Net 73.3 96.3 66.4
STGCN2D

LCR
23.2 85.5 69.4

STGCN3D 53.1 89.2 75.0
SIP-Net 66.4 93.5 64.8
STGCN3D (GT 3D poses) - - 81.5

poses contain less discriminative and more ambiguous infor-
mation.

On the NTU dataset, the 3D pose baseline obtains 74.8%
accuracy when using GT tubes and estimated poses (STGCN3D
on GT Tubes), compared to 81.5% reported in (Yan et al.
2018) when using ground-truth 3D poses. This gap of 7%
in a constrained environment is likely to increase for videos
captured in the wild. The performance of the features-based
baseline (SIP-Net) is lower, 66.4% on GT tubes, suggesting
than SIP-Net performs better only in unconstrained scenar-
ios.

B Per-class results on Mimetics

In Table 11, we present for each class the top-1 accuracy
and the AP of the different methods. For the top-1 accuracy
metric, SIP-Net obtains the best performance for 19 out of 50
classes, with a mean accuracy of 14.2%. The RGB 3D CNN
baseline obtains the highest AP for 8 classes, which often
correspond to classes in which manipulated objects are small,
making the network less bias towards context (e.g. the ball
for the action catching of throwing baseball). Table 11 also
highlights that the recognition of mimed actions is a very
challenging and open task, as none of the videos are correctly
classified (i.e. 0% top-1 accuracy) by the 5 baselines for 5 out
of the 50 classes.
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Table 11 Per-class results on the Kinetics for the RGB and Flow 3D CNN baselines, for STGCN (Yan et al. 2018) (2D with
OpenPose), as well as our three baselines (STGCN2D, STGCN3D, SIP-Net). In each column, the first number is the top-1
accuracy per class (in %), and the number in parenthesis is the AP (in %).

class #vid RGB Flow STGCN STGCN2D STGCN3D SIP-Net
archery 19 0.0 (3.4) 0.0 (2.6) 5.3 (11.3) 0.0 (9.5) 0.0 (10.7) 36.8 (42.0)
bowling 13 15.4 (16.8) 15.4 (21.1) 0.0 (2.4) 0.0 (4.9) 0.0 (3.4) 7.7 (15.9)
brushing hair 20 15.0 (23.6) 25.0 (39.6) 0.0 (8.6) 0.0 (2.7) 0.0 (1.0) 0.0 (7.5)
brushing teeth 15 40.0 (45.4) 53.3 (62.8) 13.3 (24.4) 0.0 (1.7) 0.0 (1.9) 6.7 (25.3)
canoeing or kayaking 14 0.0 (1.5) 0.0 (5.3) 0.0 (2.6) 0.0 (2.8) 0.0 (8.2) 0.0 (3.9)
catching or throwing baseball 14 21.4 (27.0) 0.0 (22.9) 0.0 (9.2) 0.0 (5.9) 0.0 (2.6) 0.0 (17.6)
catching or throwing frisbee 14 21.4 (31.5) 21.4 (42.7) 7.1 (28.1) 0.0 (10.3) 0.0 (6.7) 21.4 (39.5)
clean and jerk 13 15.4 (25.3) 38.5 (47.7) 46.2 (52.3) 23.1 (43.0) 30.8 (47.5) 46.2 (50.1)
cleaning windows 16 12.5 (17.0) 6.2 (11.0) 6.2 (8.6) 0.0 (1.2) 0.0 (1.2) 0.0 (3.6)
climbing a rope 14 0.0 (1.2) 0.0 (1.1) 0.0 (9.5) 0.0 (6.2) 0.0 (4.8) 0.0 (5.1)
climbing ladder 13 0.0 (1.8) 0.0 (5.4) 7.7 (11.4) 0.0 (1.2) 0.0 (1.8) 0.0 (2.1)
deadlifting 11 36.4 (52.8) 45.5 (64.9) 36.4 (55.2) 54.5 (69.2) 45.5 (67.1) 63.6 (75.5)
dribbling basketball 18 5.6 (11.6) 22.2 (31.5) 50.0 (60.6) 44.4 (49.4) 61.1 (67.9) 27.8 (46.9)
drinking 27 3.7 (10.4) 0.0 (13.6) 0.0 (13.9) 0.0 (0.9) 0.0 (0.9) 7.4 (10.3)
driving car 16 0.0 (2.9) 0.0 (3.7) 6.2 (8.8) 0.0 (2.1) 0.0 (0.7) 6.2 (9.4)
dunking basketball 10 40.0 (55.3) 60.0 (64.3) 20.0 (28.9) 30.0 (41.8) 0.0 (6.3) 40.0 (47.9)
eating cake 19 0.0 (2.0) 0.0 (2.9) 0.0 (1.3) 0.0 (0.6) 0.0 (1.4) 0.0 (0.9)
eating ice cream 11 0.0 (4.7) 0.0 (11.3) 0.0 (4.4) 0.0 (2.4) 0.0 (1.8) 18.2 (21.5)
flying kite 10 10.0 (14.4) 0.0 (3.7) 0.0 (3.2) 0.0 (1.6) 0.0 (1.2) 0.0 (6.6)
golf driving 16 12.5 (19.7) 31.2 (44.0) 62.5 (69.5) 50.0 (57.8) 37.5 (47.5) 62.5 (70.5)
hitting baseball 15 6.7 (18.5) 13.3 (23.4) 0.0 (17.7) 20.0 (34.9) 6.7 (16.0) 20.0 (34.1)
hurdling 10 0.0 (13.5) 20.0 (29.7) 20.0 (29.2) 0.0 (9.8) 0.0 (11.0) 10.0 (23.3)
juggling balls 12 33.3 (40.9) 25.0 (39.7) 33.3 (53.0) 58.3 (60.3) 25.0 (35.5) 16.7 (32.6)
juggling soccer ball 18 11.1 (23.9) 5.6 (25.5) 50.0 (61.6) 0.0 (12.1) 27.8 (41.8) 44.4 (57.5)
opening bottle 9 0.0 (1.7) 0.0 (4.7) 11.1 (13.8) 0.0 (1.0) 0.0 (0.8) 0.0 (6.9)
playing accordion 11 0.0 (4.7) 9.1 (18.5) 9.1 (11.2) 0.0 (6.7) 0.0 (5.0) 27.3 (36.1)
playing basketball 14 7.1 (21.6) 14.3 (35.5) 0.0 (27.9) 7.1 (23.6) 0.0 (7.3) 0.0 (10.5)
playing bass guitar 13 0.0 (5.2) 7.7 (12.4) 7.7 (20.3) 0.0 (6.0) 0.0 (3.2) 15.4 (27.7)
playing guitar 18 5.6 (9.2) 5.6 (12.8) 5.6 (14.4) 0.0 (3.1) 0.0 (1.1) 5.6 (14.9)
playing piano 17 0.0 (9.6) 11.8 (18.7) 17.6 (19.6) 0.0 (6.8) 5.9 (11.2) 11.8 (13.5)
playing saxophone 13 0.0 (2.7) 0.0 (6.3) 7.7 (9.1) 0.0 (3.7) 0.0 (4.0) 0.0 (14.2)
playing tennis 19 5.3 (7.9) 10.5 (15.1) 21.1 (35.0) 31.6 (45.5) 5.3 (20.4) 21.1 (34.5)
playing trumpet 14 0.0 (8.0) 21.4 (25.1) 7.1 (14.0) 0.0 (14.2) 0.0 (12.7) 35.7 (47.2)
playing violin 20 10.0 (15.3) 10.0 (26.0) 5.0 (15.2) 25.0 (37.5) 25.0 (34.7) 25.0 (36.5)
playing volleyball 13 30.8 (44.4) 7.7 (28.3) 38.5 (52.9) 0.0 (5.3) 0.0 (4.5) 7.7 (18.4)
punching person (boxing) 16 12.5 (22.8) 18.8 (30.3) 25.0 (31.3) 6.2 (19.8) 0.0 (8.8) 12.5 (20.3)
reading book 10 0.0 (1.8) 0.0 (6.0) 0.0 (3.5) 0.0 (2.1) 0.0 (2.3) 10.0 (17.9)
reading newspaper 10 0.0 (2.3) 0.0 (1.1) 0.0 (1.2) 0.0 (0.7) 0.0 (0.5) 0.0 (3.1)
shooting basketball 19 5.3 (15.4) 5.3 (20.2) 5.3 (11.3) 5.3 (19.2) 0.0 (3.4) 5.3 (13.4)
shooting goal (soccer) 14 7.1 (23.9) 0.0 (21.2) 7.1 (22.6) 7.1 (24.3) 0.0 (10.0) 14.3 (29.8)
skiing (not slalom or crosscountry) 10 0.0 (4.1) 20.0 (23.0) 0.0 (1.5) 0.0 (1.1) 0.0 (1.4) 0.0 (2.0)
skiing slalom 10 0.0 (5.5) 0.0 (1.5) 0.0 (0.6) 10.0 (13.3) 20.0 (20.8) 10.0 (15.8)
skipping rope 12 41.7 (53.6) 41.7 (58.5) 75.0 (83.3) 75.0 (81.3) 0.0 (8.8) 50.0 (61.6)
smoking 19 0.0 (8.5) 5.3 (14.8) 0.0 (7.2) 0.0 (2.0) 0.0 (1.5) 5.3 (13.8)
surfing water 10 0.0 (6.9) 0.0 (2.9) 0.0 (6.6) 0.0 (4.2) 0.0 (3.6) 0.0 (2.6)
sweeping floor 11 0.0 (1.9) 0.0 (1.7) 0.0 (1.4) 0.0 (1.0) 0.0 (3.0) 0.0 (0.9)
sword fighting 17 0.0 (15.2) 17.6 (36.1) 11.8 (25.2) 0.0 (7.2) 0.0 (5.4) 0.0 (10.2)
tying tie 8 0.0 (7.3) 0.0 (7.4) 12.5 (21.5) 0.0 (6.2) 0.0 (0.8) 0.0 (13.4)
walking the dog 15 6.7 (11.7) 0.0 (4.9) 0.0 (2.8) 0.0 (1.6) 0.0 (2.0) 0.0 (3.7)
writing 13 0.0 (1.8) 0.0 (3.0) 0.0 (2.9) 0.0 (2.6) 0.0 (0.9) 15.4 (18.5)
avg (50 classes) 713 8.6 (15.6) 11.8 (21.1) 12.6 (20.7) 9.0 (15.4) 5.8 (11.3) 14.2 (22.7)


