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Abstract This paper presents an overview of the evolution of local features from handcrafted to deep-
learning-based methods, followed by a discussion of several benchmarks and papers evaluating such local
features. Our investigations are motivated by 3D reconstruction problems, where the precise location of the
features is important. As we describe these methods, we highlight and explain the challenges of feature ex-
traction and potential ways to overcome them. We first present handcrafted methods, followed by methods
based on classical machine learning and finally we discuss methods based on deep-learning. This largely
chronologically-ordered presentation will help the reader to fully understand the topic of image and region
description in order to make best use of it in modern computer vision applications. In particular, understand-
ing handcrafted methods and their motivation can help to understand modern approaches and how machine
learning is used to improve the results. We also provide references to most of the relevant literature and code.

1 Introduction

In the computer vision literature we encounter local features in two main contexts. In the first context, a local
feature is the description of a region of an image in terms of characteristics extracted from that region. Such
local features are usually called local descriptors and are usually represented by vectors of real numbers or
binary digits. For example, local descriptors could be obtained by concatenating the pixel intensities or com-
puting a colour histogram of the region. In the second context, a local feature is a distinctive point or area
of an image, and such local features are often called keypoints, interest points or anchor points. It is often
important both to find the precise location of such a local feature in the image, which is called defection,
and to extract a corresponding local descriptor. Keypoint detection also usually involves the determination
of a set of transformations that may be applied to the region in order to make its descriptor invariant to some
geometric or photometric transformations. This paper discusses both detection and description. For clarifi-
cation, in the remainder of this paper a local feature consists of a keypoint/interest point and its descriptor.

Local features are important for object recognition by the human visual system [Biederman, [1987]. They
have also been successful in many computer vision applications including face and object detection and
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recognition, image retrieval, motion detection and tracking, depth-map generation, image stitching, camera
calibration, 3D reconstruction, structure from motion (SfM), visual odometry, and visual simultaneous lo-
calisation and mapping (VSLAM).

We distinguish three broad categories of local features depending on the applications for which those
features were designed [Tuytelaars and Mikolajczyk, [2007]. First, local features may be designed to have a
specific semantic interpretation. For instance edges in aerial images often correspond to roads, while blobs
often represent impurities in inspection tasks. Second, local features may be designed to be localised ac-
curately and consistently over time. Such local features are important in matching (e.g. camera calibration
and 3D reconstruction) and tracking (e.g. visual odometry) applications. Finally, the set of local features
extracted from an image can be used as a robust representation for the recognition and retrieval of objects
and scenes. Such local features do not need to have specific semantics or to be accurately localised, as the
corresponding applications mainly exploit the statistics of the local-feature set.

In this paper we are mainly interested in the second category of local features, where the aim is to accu-
rately localise and match keypoints that correspond to the same 3D point viewed in different images. Ideally,
such local features should be robust to variations in viewpoint (geometric deformations) and lighting (pho-
tometric changes). They should also be robust to image noise, discretisation effects, compression artifacts
and blur. Furthermore, the descriptors should be distinctive. That is, they should have a rich enough infor-
mation content that local features corresponding to different 3D points are readily distinguished, while local
features corresponding to the same 3D point are readily matched, even in the presence of a large number
of such features. On the other hand, many applications require descriptors that are compact. That is, they
should be of low dimension so that they require little memory to store and may be efficiently matched.

Since the geometric relationship between two images of the same scene is usually a projective transforma-
tion, one might argue that local features should be invariant to projective transformations, or that they should
be invariant to affine transformations, which approximate small perspective transformations well. One might
achieve such invariance in the following way, as illustrated in Figure[I] First one defines a canonical view of
the patch and estimates the geometric transformation between the image and the canonical view. Then one
transforms the local region into the canonical view and computes the descriptor on this normalised patch.
Nevertheless, most local features are only rotation and scale invariant, and they compute normalised patches
by first estimating each keypoint’s dominant orientation and then its characteristic scale.

To address these requirements, a large set of different keypoint detectors and descriptors have been pro-
posed in the last three decades. In addition to our description, the reader should refer to the comprehensive
surveys of Tuytelaars and Mikolajczyk! [2007]], [Krig| [2014] and [Fan et al.|[2014b]], as well as the bench-
mark papers of Mikolajczyk et al.| [2005]], Mikolajczyk and Schmid| [2003]], [Heinly et al.| [2012], Balntas
et al.|[2017]] and|Schonberger et al.| [2017]]. Many of these feature detectors and descriptors are integrated in
OpenCVF_-] and VLFeaﬂ

Aggregates of local features such as the bag of visual words [Sivic et al., [2003| (Csurka et al., 2004],
and its extensions such as Fisher Vectors [Perronnin and Dance, |2007]] and VLAD [Jégou et al.| 2010]] were

! See the section entitled “Feature Detection and Description” in the OpenCV Tutorial at https: //docs.opencv.org/
3.1.0/d6/d00/tutorial_py_root.html.

2 The Matlab VLFeat library is available atjhttp: //www.v1feat.org/,


https://docs.opencv.org/3.1.0/d6/d00/tutorial_py_root.html
https://docs.opencv.org/3.1.0/d6/d00/tutorial_py_root.html
http://www.vlfeat.org/
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Fig. 1 Local feature detection and description pipeline. A detector is covariant to a particular class of geometric transforms
if it extracts transformed versions of the same regions when an image is subject to a transform from that class. For instance,
regions detected by a scale and rotation covariant detector should scale by 2x and rotate by 30° if the image is scaled by 2x
and rotated by 30°. (By courtesy of Andrea Vedaldi.)

the most widely used representations for image classification and retrieval for a timespan of more than a
decade. Therefore a tremendous amount of work on learning, combining, and improving local features for
object recognition, image classification, and retrieval was published. However, detailed presentation of that
literature is out of the scope of this paper which instead focuses on local features that may be accurately
localised and consistently matched.

This paper is structured as follows. We present work on handcrafted local features (Section[2)) before dis-
cussing methods based on classical machine learning (Section[3). Then we present advances in detection and
description using deep learning (Sectiond). Finally, we summarise the main findings of several benchmark
papers (Section[5) and conclude (Section [6).

2 Handcrafted local features

Before the deep-learning revolution, handcrafted local features were a key element of almost all computer
vision applications. The requirements for these applications were diverse. Therefore, many different hand-
crafted detectors and descriptors have been proposed over the last three decades. While several of the papers
discussed in this section introduce both a detector and a descriptor, it is often possible to pair the detector
from one local feature with the descriptor from another. For this reason, this section first discusses key-
point detectors (Section 2.T)), then local feature descriptors given by real vectors that we refer to as real
descriptors (Section[2.2)) and finally descriptors given by binary vectors that we refer to as binary descrip-
tors (Section[2.3).
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2.1 Keypoint detectors

Handcrafted keypoint detectors may be based on finding corners, analysing intensity derivatives, segmenta-
tion, mathematical morphology, saliency and normalised intensity edges, as we now describe.

The earliest detectors were based on finding corners and on analysing intensity derivatives. Corner de-
tectors find maxima of curvature or abrupt changes in the direction of the tangent to an edge [Rosenfeld
and Kakl, 1982, [Wang and Brady, |1995]]. Meanwhile, intensity-derivative-based detectors try to find regions
that satisfy certain uniqueness and stability criteria, and include the Hessian detector [Zuniga and Haralick,
1983 and Harris detector [Harris and Stephens, [1988]] as notable examples. The Hessian detector, also re-
ferred to as the determinant of Hessian (DoH) method, is used in the popular speeded up robust features
(SURF) algorithm [Bay et al., 2006|], where for efficiency, the Hessian is roughly approximated with a set
of box filters and no smoothing is applied when going from one scale to the next. Both Harris and Hessian
methods were extended by Mikolajczyk and Schmid|[2004] to handle affine invariance. Furthermore, one of
the most popular keypoint detection methods, the scale-invariant feature transform (SIFT) detector [Lowel
2004], can be seen as an intensity-derivative-based method. In particular, the SIFT detector uses the differ-
ence of Gaussians (DoG) to detect local extrema and the DoG can be viewed as an approximation of the
Laplacian of a Gaussian.

Segmentation techniques have also been employed for detection. Such methods either work with junc-
tions on the boundaries of homogeneous regions [Liu and Tsail [1990] or they work with the homogeneous
regions themselves [[Corso and Hager, [2005]]. Similarly, the maximally stable extremal regions (MSER) de-
tector [Matas et al., [2002], which was developed for estimating disparities in wide-baseline stereo, uses
watershed-like segmentation to extract homogeneous intensity regions which are stable over a wide range of
thresholds.

Several detectors are based on ideas from mathematical morphology. For instance, SUSAN (univalue seg-
ment assimilating nucleus) [Smith and Brady}[1997] computes the fraction of pixels within a neighbourhood
which have similar intensity to the center pixel. Corners can then be localised by applying a threshold to this
measure and selecting local minima. FAST (features from accelerated segment test) [Rosten and Drummond,
20006] is an extension of SUSAN, whose keypoint detector is significantly faster. The method relies on a set
of pixels in a circular pattern to determine a keypoint, and makes comparisons between the intensities of
pixels on the circle and the intensity of the pixel at the center of the circle. If a number of consecutive pixels
around the circle are consistently brighter than the centre or consistently darker than the centre, then the
central pixel is considered to be a good candidate. The process concludes with non-maximum suppression.
As originally proposed, FAST is not a scale-space detector, so|Lepetit and Fual[2006] extended it to perform
scale selection with the Laplacian function.

Salient-region-based detectors exploit the notion that keypoints should exhibit local attributes that are
unpredictable compared to the surrounding region. For instance, [Kadir et al.|[2004]] proposed to measure the
change in entropy of a grey-value histogram computed in a set of neighbourhoods of variety of positions,
scales and affine shapes. Wavelet transformations have also been considered for multi-resolution keypoint
detection [Sebe et al., 2003]].
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Fig. 2 Top Row: The SIFT detection and description process. (a) The difference of Gaussians is computed
at multiple scales; (b) A scale is selected for each keypoint; (c) Gradient orientations are computed at that scale; (d) The
orientations are spatially pooled; (e) This yields histograms that are concatenated and normalised to form the descriptor. Bottom
Row: The DSP-SIFT [Dong and Soatto} [2015] detection and description process. (a,b) Patches of different sizes are re-scaled,;
(c,d) Gradient orientations are computed and pooled across locations and scales; (¢) These are concatenated yielding a descriptor
of the same dimension as the ordinary SIFT descriptor. (By courtesy of Jingming Dong.)

Rather than working directly with image intensities, EdgeFocﬂ [Zitnick and Ramnathl, 2011] works with
normalised intensity edges, as its authors hypothesize that such edges are more robust to nonlinear lighting
variations and background clutter. In particular, they define an edge focus as a point that is equidistant from
two edges whose edge orientations are perpendicular, and use such edge foci as keypoints.

2.2 Real descriptors

One of the most widely used local feature descriptors is SIFT [Otero and Delbraciol, [2014]). In
the literature, SIFT often refers to the whole pipeline shown in Figure 2] (top row), including the detector as
well as the descriptor which is based on local gradient histograms computed on a 4 x 4 grid. SIFT has been
extended in several ways. These include the gradient location and orientation histogram (GLOH)
[lczyk and Schmid} [2003]], which considers a log-polar grid on which the gradients are averaged to compute
the histograms, coloured SIFT (CSIFT) [[Abdel-Hakim and Farag] [2006] which exploits colour-invariant
characteristics, domain-size pooling SIFT (DSP-SIFT) [Dong and Soatto, [2015]], which pools SIFT descrip-

3 The EdgeFoci page can be found at |http://research.microsoft.com/en-us/um/people/larryz/
edgefoci/edge_foci.htm


http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm
http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm

6 G. Csurka, C. R. Dance and M. Humenberger

tors across scales, and scale-less SIFT (SLS) [Hassner et al.,[2017]], which is a subspace representation of
SIFT across multiple scales.

Whereas SIFT uses a scale space obtained by smoothing and downsampling the input image, the idea un-
derlying DSP-SIFT [Dong and Soatto, 20135] is to instead use a size-space which is obtained by maintaining
the same scale as the input image, but considering subsets of it of variable size. Furthermore, while SIFT de-
scriptors are constructed at a selected scale and gradient orientations are pooled in its spatial neighbourhood,
DSP-SIFT considers patches of different sizes that are re-scaled and gradient orientations are pooled across
locations and scales (see Figure[2] bottom row). Note that domain-size pooling (DSP) can also be applied to
features other than SIFT.

SLS [Hassner et al., 2017 represents each pixel with a set of SIFT descriptors extracted at multiple scales.
The authors show that SLS gives far better matches than descriptors computed at a single selected scale. As
this improvement comes at a significant computational cost, the authors propose to represent each set of
SIFT descriptors by a low-dimensional, linear subspace and a subspace-to-point mapping is used to get the
final descriptors.

Several papers propose descriptors that are faster than SIFT yet still allow for reliable matching. Notably,
SUREF [Bay et al.l 2006|] computes descriptors using Haar filter responses obtained from integral images.
Also, KAZE (which is the Japanese word for wind) [Alcantarilla et al., |2012] uses a similar pipeline to
SUREF, except that it works in a nonlinear scale space. This nonlinear scale space is built using efficient
additive operator splitting techniques and variable conductance diffusion. Accelerated KAZEE] [Alcantarilla
and Nuevo, |2013]] uses fast explicit diffusion embedded in a pyramidal framework to dramatically speed up
detection.

2.3 Binary descriptors

With the spread of mobile and embedded vision systems, the demand for efficient detection and matching
of image features grew. Also, in mobile applications, it is desirable to limit the amount of data sent over
the network in order to keep latency and costs down. Moreover, in applications such as tracking and visual
simultaneous localisation and mapping (VSLAM), keypoint detection and description often have to be done
in real time. These facts have motivated many authors to propose binary descriptors, which require less stor-
age than real descriptors and can be efficiently matched using Hamming distance.

One way to build binary descriptors is to binarise existing real descriptors through quantisation [Gong
and Lazebnik| 2011] or hashing [Brown et al.| 2005, |Gionis et al., 1999, Shakhnarovich et al., 2003, Weiss
et al., 2008}, |Kulis and Grauman, 2009, [Strecha et al., [2012]. Alternatively, binary descriptors may be ex-
tracted directly from image patches. Such binary descriptors include LBP, the census transform, BRIEF,
ORB, BRISK, FREAK and BIO, as we now discuss (see also Figure E])

4 (A)KAZE is available at ht tp: //www.robesafe.com/personal/pablo.alcantarilla/kaze.html.
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Fig. 3 An illustrative summary of some of the popular binary descriptors from |Choi and Kweon| d2015|]. (By courtesy of
Yukyung Choi.)

Local binary patterns (LBP) [Ojala et al.,[1996] [Pietikainen et al.,[2011]] and the census transform
[and Woodfill, [T994] both create a descriptor by comparing the intensity of a given pixel with each of its
neighbours’ intensities, and encoding 1 if the value is greater and O otherwise. Despite their simplicity, LBP
and the census transform have proved quite powerful, so they have inspired a large set of variants.

The binary robust independent elementary feature (BRIEF) descriptor [Calonder et al) 2010] uses a
randomly-selected distribution of point-pairs relative to a central point to create the descriptor. Oriented
BRIEF (ORB) features [Rublee et al. 2011]], add rotational invariance to BRIEF by determining corner ori-
entation using FAST [Rosten and Drummond, [2006].

Binary robust invariant scalable keypoints (BRISK) [Leutenegger et al), [2011] is another popular de-
scriptor that uses a sampling pattern consisting of disks of variable sizes arranged in four concentric rings.
The pattern is pre-rotated to a characteristic direction to achieve rotation invariance. Finally, the oriented
sampling pattern is used to obtain pairwise brightness comparisons which are assembled into the binary de-
scriptor.
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Table 1 Popular datasets for local feature detector and descriptor training and evaluation.

Dataset Nature of ground truth Reference

Oxford-Affine homographies [Mikolajczyk and Schmid, 2003
Photo-Tourism corresponding patches [[Winder, 2007]]

Fountain and Herzjesu visibility and optical flow [Strecha et al.,2008]

EdgeFoci image sequences [Zitnick and Ramnath| [2011]
Cornell BigStM 3D points, tracks, camera info [Crandall et al.,2013||

Hannover image sequences, homographies [[Cordes et al., 2013
RomePatches corresponding patches, image labels  [Li et al., 2014, [Paulin et al., 2015]
1DSfM 3D points and camera info [Wilson and Snavelyl [2014]]
DalLl object deformations [Simo-Serra et al.,|2015a]
WebCam image sequences [[Verdie et al.| 2015]

HPatches corresponding patches, homographies  [Balntas et al.,|2017]]
HSequences image pairs, homographies [Lenc and Vedaldi, [2018]]

The fast retina keypoints (FREAK) descriptoxE] [Alahi et al., 2012[] uses a multi-resolution pixel-pair
sampling pattern with trained pixel-pairs. This design mimics the human eye in the sense that it has high
resolution in the fovea and lower resolution in the periphery.

The robust binary feature using intensity order (BIO) descriptor [|Choi et al.l [2014] was inspired by the
local intensity order pattern (LIOP) deSCI’iptOIE] [Wang et al., 2011} 2016] which encodes local intensity or-
dering information. The authors use a FAST-like binary comparison test and detect keypoints using a fast
approximation of the determinant of Hessian (DoH). As ordinal descriptors are insensitive to moderate rank-
order errors, they can be quantised into binary descriptors without noticeably degrading performance.

3 Local features based on classical machine learning

We now discuss local feature detectors and descriptors based on classical machine learning, as opposed
to deep learning which is discussed in Section ] As with machine learning methods in general [Mohri
et al.l |2012], such methods involve training on a given dataset in the expectation that this will lead to good
performance on new data drawn from a similar distribution. The training procedure can lie anywhere on a
spectrum from unsupervised to supervised. On the one hand, purely unsupervised methods need no labelled
data. When such unsupervised methods are applied to learning local descriptors, the main idea is often to
adapt handcrafted features to the given dataset, for instance by projecting them into a well-chosen low-
dimensional space. On the other hand, supervised learning methods require labelled data. In this context,
positive labels usually corresponds to “matched keypoints”, which are pairs of patches representing different
views of the same 3D point. Such matched keypoints can easily be generated synthetically, or extracted from
sequences of images of a given scene by leveraging geometric consistency (i.e. a known homography or an
essential matrix relating different views). Table [I] lists the most popular datasets used to train or evaluate

5 Code available atfhttps://github.com/kikohs/freak.
6 The code for LIOP is available at http://zhwang.me/publication/liop/index.html.
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local features, which include Oxford-Afﬁneﬂ Photo-Tourisnﬂ Fountain and Herzjesn.ﬂ Cornell BigSfM@
1DSﬂ\/JE], RomePatches{T_z] and HPatches{T_S-l

As in the previous section, we first discuss detectors (Section [3.1)), before moving on to real and binary
descriptors (Sections [3.2]and 3.3).

3.1 Learning detectors

Several papers have considered using classical machine learning to speed up detection while finding the
same keypoints as handcrafted methods [Rosten and Drummond), 2006, |[Leutenegger et al., 2011} [Rublee
et al., 2011]]. Also, Hartmann et al.|[2014] learned a classifier that predicts which keypoints are likely to
be discarded when matching descriptors among those extracted by a standard keypoint detection algorithm,
namely DoG. By using a random forest to learn such “matchability”, they showed that the approach can
considerably improve and speed up the feature matching stage of a SfM pipeline. However this approach
remains limited by the quality of the initial keypoint detector.

Other papers have focused on using learning to improve detector repeatability. Given a collection of
keypoints detected by a standard detector, |Strecha et al.|[2009] demonstrate higher repeatability by using a
WaldBoost classifier to keep only keypoints that are known to be useful for the task at hand. For instance,
in the task of image matching in an urban environment, their classifier learns to focus on more-stable man-
made structures and to ignore objects that undergo regular changes such as vegetation and clouds.

Meanwhile |Verdie et al.| [2015]] proposed the temporally invariant learned detector (TILDE), which was
designed for repeatable keypoint detection in the presence of drastic illumination changes caused by varia-
tions in weather, season and time-of-day, to which keypoint detectors tend to be highly sensitive. To achieve
this goal, the authors worked with a collection of sequences of webcam images, where each sequence con-
sists of images acquired at the same location but different times. Using this collection as training data, they
learned a variety of regressors to predict how likely a SIFT keypoint detected in one image from a given
sequence will also be detected at a nearby point in another image from that sequence. They compared re-
gressors based on piecewise-linear functions, the LeNet-5 CNN [LeCun et al.|, |1998]] and boosted regression
trees. While SIFT keypoints were used during training, at runtime the regressor was passed over the entire
image, giving a “score map”. Then points with a score are selected and subjected to non-maximum sup-
pression. The results showed that using piecewise-linear functions as a regressor gave consistently more
reliable keypoints than alternative regressors and than known keypoint detectors such as SURF and MSER.
As discussed in Section [5} TILDE remains a state-of-the-art approach to detection in the presence of illu-

7 Oxford-Affine is available at http: / /www.robots.ox.ac.uk/~vgg/data/data-aff.html.

8 Photo-Tourism dataset page http://matthewalunbrown.com/patchdata/patchdata.html.

9 Fountain and Herzjesu can be downloaded from https://cvlab.epfl.ch/data/keypoint,

10 Cornell BigSfM is available atfhttp: //www.cs.cornell.edu/projects/bigsfm/.

11 1DSfM dataset page http://www.cs.cornell.edu/projects/1ldsfm/|

12 RomePatches is available at http://lear.inrialpes.fr/people/paulin/projects/RomePatches/,
13 HPatches data and benchmark on https://github.com/hpatchesl


http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
http://matthewalunbrown.com/patchdata/patchdata.html
https://cvlab.epfl.ch/data/keypoint
http://www.cs.cornell.edu/projects/bigsfm/
http://www.cs.cornell.edu/projects/1dsfm/
http://lear.inrialpes.fr/people/paulin/projects/RomePatches/
https://github.com/hpatches
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Fig. 4 Discriminative descriptor learning by optimising spatial pooling and feature embedding in [2010]. (By
courtesy of Bin Fan.)

mination changes, however it is limited to situations where only keypoints with a common scale are matched.

3.2 Learning real descriptors

Early descriptor-learning methods included unsupervised PCA-SIFT [Ke and Sukthankar, 2004]], which uses
principal component analysis (PCA) to embed the gradient image of a patch into a new space, and supervised
methods using randomised trees [Lepetit and Fual [2006] and boosting [Babenko et al., 2007] to learn feature
representations from matching and non-matching local patch pairs. More recently, Brown et al.| [2010]] pro-
posed a model which builds on top of handcrafted low-level features, such as steerable filter banks or gradient
orientation maps with different spatial pooling, as in the SIFT and DAISY descriptors. Considering both lin-
ear and nonlinear transforms for dimensionality reduction, they used linear discriminant analysis (LDA)
to select the pooling parameters and to obtain low-dimensional representations (see Figure f). Meanwhile,
[Philbin et al.| [2010] learned both linear and nonlinear discriminative projections into lower dimensional
spaces using a margin-based cost function, which aims to separate matching descriptors from non-matching
descriptors. Training data was generated automatically by leveraging geometric consistency.

More recently, |Simonyan et al.|[2014]] proposed convex large-margin formulations of two tasks in de-
scriptor design: the selection of spatial pooling regions, for which the authors use L;-regularisation; and de-
scriptor dimensionality reduction, for which they use nuclear-norm regularisation. Their method, ConVOpiEl

14 Code available for ConvOpt on http: //www.robots.ox.ac.uk/~vgg/research/learn_desc/.
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applies a stochastic optimisation technique called regularized dual averaging [Xiao, |[2010] that is well suited
to non-smooth sparsity-inducing cost functions. The authors further proposed a weakly-supervised exten-
sion, where unlabelled data is exploited using an optimisation objective inspired by the large margin nearest
neighbour (LMNN) approach [Weinberger and Saul, [2009].

Wang et al.|[2014] aimed to make descriptors robust to affine distortions introduced by viewpoint changes.
Their method performs PCA on a collection of affine-warped versions of an input patch. A projection matrix
is computed from the first few principal components, in order to describe this collection of affine-warped
patches as a linear subspace. To convert this matrix into a descriptor vector, they employ a simple subspace-
to-point mapping which consists in stacking the upper-triangular elements of the projection matrix into a
vector, after scaling the diagonal entries by 1/+/2.

Only a few papers have attempted to directly design descriptors to be robust to deformations that are
more general than affine transformations. In the case of images of objects that have undergone nonrigid de-
formations, there have been two main approaches to finding correspondences given descriptors that are not
robust by design. One approach is to enforce global consistency [[Cheng et al., 2008} |Sanchez-Riera et al.,
2010, [Torresani et al., |2008]] and the other is to include segmentation information in the descriptor and then
solve complex optimisation problems to establish matches [Trulls et al., 2013|]. Arguably, a better option is
to build deformation-invariant descriptors. As such, DaL (deformation and light invariant) [Simo-Serra
et al.| 2015a] uses methods from diffusion geometry [|Gebal et al.; 2009, [Sun et al.,[2009] to build a descrip-
tor for 2D image patches which is invariant to nonrigid deformations and photometric changes. A patch is
described in terms of the heat it dissipates onto its neighbourhood over time. To ensure compact descriptors,
DaLI uses PCA for dimensionality reduction. Experimental results demonstrate that the DaLI descriptor can
simultaneously handle quite complex photometric changes and spatial warps.

3.3 Learning binary descriptors

There is a broad literature on learning binary descriptors for specific applications, such as face recogni-
tion [Lei et al., 2014} [Lu et al., 2015, 2018}, |Duan et al., 2017b|]. However, this review focusses only on
methods that may be relevant for SfM and 3D reconstruction, which include LDAHash, D-BRIEF, RI-LBD,
BinBoost, BOLD and RMGD, as we now discuss.

LDAHash [Strecha et al., 2012|] computes a projection matrix for a given source of handcrafted de-
scriptors, such as SIFT or SURF, using linear discriminant analysis (LDA). LDA chooses this projection
to minimize the ratio of intra-class variance to inter-class variance. Finally, the projections are optimally
thresholded to give binary vectors. In D—BRIEFPE] [Trzcinski and Lepetit, 2012] the training data is used to
learn linear projections that map image patches to a more discriminative subspace. In order to obtain binary
descriptors, the projected patches are simply thresholded. More recently, [Duan et al.|[2017c] proposed the
rotation-invariant local binary descriptors (RI-LBDs), in which each local patch is first categorized into a

15 Code for Dall is available at http: //www.iri.upc.edu/people/esimo/research/dali/,
16 The code for D-BRIEF is available at ht tps://cvlab.epfl.ch/research/detect/dbrief.
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“rotational binary pattern”. The orientation for each such pattern and a projection matrix that maps each
image patch into a binary code are learned jointly.

BBoos features [Trzcinski et al.,[2015]] are low-dimensional but highly discriminative descriptors com-
puted with a boosted binary hash function. They use weak learners which pool image gradients over particu-
lar regions, inspired by handcrafted descriptors like BRIEF [Calonder et al., 2010]. Similarly, the ring-based
multi-grouped descriptor (RMGD) [Gao et al.,2015]] uses pooling over a polar grid, and it performs boosting
to select from the set of all binary comparisons between pairs of grid cells. A circular integral image is used
for fast calculation of the binary descriptor. To increase discriminativeness and robustness, the RMGD is
built with multiple image properties including intensity, - and y-gradients, gradient magnitudes, orienta-
tions and soft-assigned gradient orientations. The receptive fields descriptor (RFD) [Fan et al., 2014al] uses
gradient-orientation maps summed over two kinds of receptive fields, namely rectangular pooling regions
or Gaussian pooling regions. Instead of selecting these regions by boosting, RFD selects them by a greedy
approach, according to their distinctiveness and correlations.

Whereas most binary descriptors are constructing using the same set of measurements for every input
patch, binary online learned descriptors (B OLDE;] [Balntas et al., 2015|2018 adapt the set of measurements
depending on the input patch. This adaptation is motivated by the observation that some of the pairwise in-
tensity comparisons made by conventional binary descriptors are unstable to small affine perturbations, for
some patches. The adaptation is accomplished by synthesizing multiple small random perturbations of the
given input patch. Inspired by LDA, the authors treat these perturbed versions as coming from a single
“class”, and select comparisons leading to small intra-class distances but large inter-class distances. The
selection of comparisons leading to large intra-class distances is made offline from a large set of binary tests
using random patches. This online descriptor adaptation process can also be applied to other binary descrip-
tors, and the authors demonstrate that it leads to a consistent improvement in precision-recall curves when
applied to BRIEF, ORB and BBoost descriptors.

4 Deep-learning-based local features

Deep learning is an approach to machine learning that involves mapping an input through a cascade of non-
linear processing layers to produce an output [Deng et al., 2014, Schmidhuber; 2015} [LeCun et al.l 2015}
Goodfellow et al.l [2016]. The cascade is said to be “deep” if it has many (> 3) layers. By automatically
learning features across multiple layers, such a system can learn complex functions mapping raw data to
outputs directly, without having to rely on handcrafted features. Often, the layers are those of an artificial
neural network, trained by some variant of gradient descent, in which gradients are computed by backprop-
agation. In the field of computer vision, this network is often a convolutional neural network (CNN) with an
image as input. Such a CNN consists of a succession of convolutional layers, whose units (neurons) have
learnable weights, and other intermediate layers which play a variety of functions, such as introducing non-

17 Source code for BBoost is available athttps://cvlab.epfl.ch/research/detect /binboost,
18 Open source implementation of BOLD is available at http://vbalnt.io/projects/bold/.
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linearities, pooling to downsample and normalising activations across a batch of inputs.

In the past six years, deep learning has revolutionized computer vision, enabling huge improvements in
the state-of-the-art for tasks such as image recognition [Krizhevsky et al.| 2012, He et al., 2016, [Huang et al.,
2017]] and pushing the community to propose deep-learning methods for most tasks associated with local
features. As in the previous two sections, our discussion of such methods begins by considering keypoint
detection (Section [4.1), real descriptors (Section and binary descriptors (Section [4.3). However, we
conclude the section with a discussion of methods for end-to-end detection and description (Section [4.4).

4.1 Learning detectors with CNNs

Lenc and Vedaldi [2016] discuss covariant point detector The authors treat detection as a regression
problem in which one learns a function ¢ : X — G that maps image patches from a set X to transformations
from a group G. They use a loss that encourages the function ¢ to approximately satisfy the covariance
constraint, which requires that

o(gx) = gop(x) for all image patches x € X and transformations g € G.

Approximating such functions ¢ with CNNs resembling the compact LeNet model of [LeCun et al.| [1998]],
the authors learn three detectors. The first two detectors are covariant with the group of translations, i.e.
they are corner detectors. The third detector is covariant with the group of translations and 2D rotations. The
authors call the latter detector ROTNET, but we shall use the terminology of |[Zang et al.|[2017] and call it
CovDet. To use the CovDet detector, the authors apply the CNN ¢ to the full image, and each pixel votes for
a single rotation and translation. These votes are accumulated and used as confidence scores. Only rotations
and translations whose confidence score exceeds a threshold are subjected to non-maximum suppression and
retained as detected keypoints. Their results show that CovDet performs noticeably better than SIFT when
recovering the relative orientation of randomly rotated patch pairs.

The transformation covariant local feature detector (TCOVDet [Zang et al., 2017] is an extension of
CovDet. Like CovDet, TCovDet treats detection as a regression problem, learning a CNN ¢, called the
“transformation prediction network™ or “transformation regressor”, that maps input patches to transforma-
tion matrices and selecting keypoints based on voting for transformations. However, the network in TCovDet
is trained using patches selected by TILDE, which the authors call “standard patches”. Also, the training ob-
jective is to recover 24 randomly-selected affine transforms per standard patch, rather than just translations
and rotations as in CovDet. Furthermore, the loss is augmented by requiring that the original “untrans-
formed” patch detected by TILDE maps to the identity transformation. The authors argue that this aug-
mented loss resolves a major drawback with CovDet, which is that the regressor ¢ that CovDet learns may
not be unique. The results show that TCovDet improves repeatability scores relative to 13 other detectors on
three large datasets. Furthermore, TCovDet improves matching scores against four of those detectors in two

19 Matlab code from the work of |Lenc and Vedaldi|[2016] is available athttps://github.com/lenck/ddet.

20 TensorFlow code for TCovDet is available at https://github.com/ColumbiaDVMM/Transform_Covariant_|
Detector.
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Fig. 5 Illustrating the TCovDet keypoint detection framework. (a) The transformation prediction network
predicts the geometric transformation of the patch. (b) The inverse of the predicted transformation is such that it warps the patch
to a “standard patch”. (c) The predicted transformations are aggregated to vote for the locations and shapes of keypoints. (By
courtesy of Xu Zhang.)

out of the three datasets.

[Savinov et al|[2017] treated detector design as the problem of learning a response function, which maps
patches to real numbers that determine a ranking of image points. The keypoints detected are those points
at which the value of the response function is in the top or bottom quantiles of the set of all responses
after non-maximum suppression. Such a detector is considered to be good if these quantiles are preserved
under the transformations to which the detector is intended to be invariant. The authors propose a variety of
neural networks implementing such response functions that they collectively call quad-networks since these
networks are trained using a quadruplet loss. A quadruplet loss is a loss which takes the network outputs
for four patches as input. Specifically, say we are given a set of four patches P := {p, ¢,p’, ¢’} consisting
of a pair of patches p, ¢ corresponding to distinct world points and the same pair of patches p’, ¢’ after a
transformation that we want the detector to be invariant to. The aim is to train weights w of the response
function H,,(-) to minimise the loss

loss,, (P) := max{0,1 — R, (P)} where Ry (P) := (Hyw(p) — Huw(q))(Hw(p") — Hw(q')).

This loss vanishes if R,,(P) > 1 and is positive otherwise. In order for R,,(P) to be large, it is necessary
that either patches p, p’ both have much larger responses than patches ¢, ¢’ respectively, or patches ¢, ¢’ both
have much higher responses than patches p, p’ respectively.

The authors compared detectors based on a variety of network architectures with the DoG detector, but
with no other handcrafted or learned detector, in two settings. The first setting involved learning a detec-
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tor to match RGB images with RGB images. In this setting the authors consider a linear network and a
convolutional network with a single hidden layer, finding that both networks outperform the DoG detector
with except in one test. The exceptional test measured the robustness of matching to JPEG compression
artefacts, which was a transformation not included in training data. The second setting involved matching
RGB images with depth images. In this setting they considered three networks: a deep network with 10 con-
volutional layers interleaved with exponential linear units (ELU) and batch normalisation layers; a shallow
fully-connected network; and a deep fully-connected network. The deep fully-connected network outper-
formed the other detectors on this task when the number of keypoints to be detected per image was moderate
(between 500 and 1500).

4.2 Learning real descriptors with CNNs

We now discuss the use of CNNs to learn real descriptors targeting applications involving matching pairs
of patches corresponding to the same 3D point. This topic has attracted at least 12 research papers to date.
In fact, the earliest work on this topic [Jahrer et al., 2008|] predates AlexNet [Krizhevsky et al., 2012], the
network whose performance on ImageNet was a key driver of the boom in popularity of CNNs in computer
vision. We begin with papers exploring the use of intermediate activations of AlexNet as descriptors, before
discussing approaches based on metric learning, in which the network learns not only descriptors but also a
function giving a distance between descriptors. The remainder of the section considers CNNs whose outputs
are descriptors to be compared with Euclidean distance (with one exception). We structure the discussion
around the loss used to train these CNNs, considering pairwise losses, triplet losses, global losses and finally
histogram losses.

AlexNet Activations. The success of AlexNet [Krizhevsky et al., [2012] inspired many authors to use
the activations of its intermediate layers as descriptors for other datasets and tasks other than the ImageNet
classification task for which it was designed. Donahue et al.|[2014] showed that such descriptors gave results
that surpassed the state of the art at the time on tasks including domain adaptation, fine-grained recognition
and scene-type recognition (with abbey, dinner, mosque and stadium as categories). Meanwhile, Long et al.
[2014] successfully applied the intermediate activations of a network almost identical to AlexNet to the tasks
of intra-class alignment, keypoint prediction and keypoint classification.

Fischer et al.| [2014] were the first to use the intermediate activations of AlexNet as descriptors for the
task of matching patches corresponding to the same 3D point. Soon after, Paulin et al.|[2015]] also presented
matching results using AlexNet. Both papers use the Euclidean distance between descriptors and compare
matching mean average precisions (mAP) with those for the SIFT descriptor. However, [Fischer et al.|[2014]
compute descriptors for regions detected with MSER, whereas Paulin et al.[[2015] use the Hessian-affine de-
tector. Noting that AlexNet has five convolutional layers followed by three fully-connected layers, the results
of [Fischer et al.| [2014]] suggest that the performance of AlexNet-based descriptors is nearly independent of
the choice of layer if the best input patch sizes are chosen. Further, the results show that AlexNet-based
descriptors clearly outperform SIFT descriptors for a wide range of choice of layer and patch size. In con-
trast, |Paulin et al.| [2015] show a clear preference for using AlexNet’s fourth convolutional layer, in line
with the results of [Long et al. [2014]], arguing that earlier layers of such networks tend to encode more
task-independent information. Moreover, they find higher mAP using SIFT descriptors than AlexNet-based
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Fig. 6 An overview of some of the first Siamese CNN-based local features learning methods. From left to right, DeepCompare
Zagoruyko and Komodakis| [2015]], MatchNet [Han et al.| 2013]], DeepDesc [Simo-Serra et al)} 2015b] and PN-Net [Balntas
[2016a]. (By courtesy of Yukyung Choi.)

descriptors.

Both |Fischer et al.|[2014]] and |Paulin et al.| [2015]] propose other descriptors, and demonstrate that they
clearly outperform both AlexNet activations and SIFT. The descriptors proposed by [Fischer et al.| [2014],

which [Paulin et al.| [2015]] call PhilippNet, use the same network architecture as AlexNet, but train it as
follows. A collection of 16000 random ‘seed’ patches were extracted from Flickr images. Next, 150 random
geometric and photometric transformations were applied to each such seed patch. The CNN was trained to
associate a single class label to all transformed versions of a given seed patch. Meanwhile, [Paulin et al[2015]]
proposed a patch-convolutional kernel network (patch-CKN) which exploits a fast and simple stochastic pro-
cedure to compute a finite-dimensional feature embedding that approximates a kernel feature map.

Metric Learning. While nearly all other work discussed in this section learns descriptors and compares
them with the Euclidean metric, MatchNelE| jointly learns a descriptor and a metric for
comparing descriptors. It computes descriptors by combining a CNN with multiple convolutional and spa-
tial pooling layers plus an optional bottle neck layer. Meanwhile, the metric network passes such descriptors
from two patches through three fully-connected layers (see Figure [6). MatchNet is trained by concatenat-

21 MatchNet code and pre-trained model available at http://www.cs.unc.edu/~xufeng/matchnet.
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Fig. 7 Various network architectures explored in|Zagoruyko and Komodakis| [2015]]. From left to right: Siamese and pseudo-
Siamese networks (the difference between these is that the pseudo-Siamese network does not have shared branches), spatial
pyramid pooling (SPP) Siamese network, central-surround two-stream network, and the two-channel network. (By courtesy of
Sergey Zagoruyko.)

ing two copies of the descriptor network with a metric network and using a cross-entropy loss, thereby
transforming the matching problem into a classification problem. The authors note that this architecture has
similarities with to that in [Zbontar and LeCun| [2016], which was designed to learn a similarity between
patches that is used as a matching cost for a stereo algorithm. Although MatchNet improves matching accu-
racy, it is not obvious how to combine it with fast approximate nearest neighbour algorithms, like hierarchical
navigable small worlds [Malkov and Yashunin, 2016]], which rely on the use of Euclidean distances.

Similarly, Zagoruyko and Komodakis [2015@ also focus on learning metrics for comparing patches. An
interesting aspect of the paper is that it explores a variety of different neural network models for the task, that
are collectively known as DeepCompare, namely: Siamese networks, pseudo-Siamese networks and two-
channel networks, spatial pyramid pooling (SPP) Siamese networks, as well as two-stream multi-resolution
models called central-surround two-stream networks (see Figure[7). In contrast to Siamese networks, whose
two streams have identical architectures and identical weights, pseudo-Siamese networks have two branches
whose architectures are identical but whose weights are not shared, allowing for additional flexibility. Mean-
while, in a two-channel network, pairs of patches are directly fed to the network as two-channel images and
hence they are processed jointly. The spatial pyramid pooling (SPP) Siamese network inserts a spatial pyra-
mid pooling layer between the convolutional layers and the fully-connected layers of the network. Such
a layer allows the processing of input patches of different sizes. Finally, the central-surround two-stream
network consists of two separate streams: surround, which takes full 64 x 64 patches as input; and central,
which takes only the central 32 x 32 portions of those patches as input. This enables processing to take place
at two different spatial resolutions. The paper compares these methods on patch matching and wide-baseline
stereo benchmarks, finding that the two-channel network clearly outperforms the others. Nevertheless, of
the methods evaluated, the two-channel network would be the most computationally expensive in practice if
many pairs of patches have to be tested against each other in a brute-force manner.

Pairwise Losses. To compare two patches, most recent methods apply the same CNN to extract a descrip-
tor from each patch and they take the Euclidean distance between these descriptors. All CNNs discussed in

22 Source code and trained models are available at http://imagine.enpc.fr/-zagoruys/deepcompare.html,
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Fig. 8 The UCN architecture [Choy et al.,|2016|] which can accurately and efficiently learn a metric space for geometric corre-
spondences, dense trajectories or semantic correspondences. It consists of a fully convolutional neural network combined with

a convolutional spatial transformer and followed by channel-wise Lo normalisation. Features that correspond to the positive
points (from both images) are trained to be closer to each other, while features that correspond to negative points are trained to
be a certain margin apart. (By courtesy of Christopher B. Choy.)

the rest of this section operate like this (except/Wei et al.| who apply a Gaussian kernel to a “projection
distance”). Furthermore, all these CNNs learn from a large set of pairs of patches that are either known to
correspond or known to not correspond (see Figure[6). However, these CNNs differ in the type of loss used
during training. In particular, some use pairwise losses, where each term involves the distance between two
patches, some use triplet losses, where each term involves the distance between three patches and others use
global losses, where each term involves distances between more than three patches.

The use of a pairwise loss for learning real descriptors was first proposed by [Jahrer et al] [2008], years
before the explosive growth in popularity of CNNs in computer vision. In particular, those authors used a
square/exponential loss, which is proportional to the squared Euclidean distance d? for patches correspond-
ing to the same 3D point and proportional to a negative exponential exp(—ad) for some « € R, for patches
corresponding to different 3D points.

DeepDesd™| [Simo-Serra et al., [2015b]] learns 128-dimensional descriptors (the same dimensionality as
SIFT) whose Euclidean distances reflect patch similarity (see also Figure [6). Based on the observation that
after a certain stage in the learning process, most pairs are correctly classified and no-longer bring an im-
provement in the performance of the descriptors, they propose a strategy of aggressive mining of “hard”
positives and negatives. This is done by selecting, after each forward-propagation, the non-corresponding
pairs that are hardest to discriminate and the corresponding pairs that match most poorly. Only such pairs
are then backpropagated through the network.

(Choy et al.| [2016] propose the UCN@ (Universal Correspondence Network) which also works with
Euclidean distance between pairs of Lo-normalised descriptors. Its particularity compared to previous ap-
proaches is that it provides a single framework to efficiently handle geometric correspondences, dense trajec-
tories and semantic correspondences. Furthermore, network’s input is a whole image, not only an extracted

23 Torch7 code and pre-trained models for DeepDesc are available at https://github.com/etrulls/

deepdesc-release,
2 The UCN code, license agreement, and pre-trained models are available at http://cvgl.stanford.edu/
projects/ucn/.
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patch, making the method suitable for dense correspondence (see Figure[8). The network extracts descriptors
from each image using the initial layers of GoogLeNet [Szegedy et al.l 20135]. It is trained with a correspon-
dence contrastive loss, whose value for a given pair of descriptors f, f’ for points x, 2’ from two images is
proportional to

\f—f ’||§ if points x, ' correspond
(max{0,m — ||f — f'||l,})* if points z, 2’ do not correspond

where m is a hyperparameter. Inspired by the GPU implementation in |Garcia et al.|[2010], the authors im-
plement nearest neighbour search as a Caffe [Jia et al., 2014]] layer to mine hard negatives on-the-fly. The
authors optionally include a convolutional spatial transformer in their network, as proposed by Jaderberg
et al.|[2015]). This transformer attempts to make the extracted features invariant to particular families of trans-
formations. The results of the paper suggest that the transformer is beneficial for semantic correspondence
tasks or when there are large geometric transformations between images, but otherwise this component can
reduce the quality of matching.

Triplet Losses. Balntas et al.| [2016a] proposes the use of a softened version of the triplet loss for training
descriptors to be matched with the Euclidean distanceEl calling the resulting network PN-Net, where P and
N stand for positive and negative (see Figure[6). This work was continued in Balntas et al| [2016b]], where
the authors compare a variety of alternative triplet losses and binary-classification-based losses for descrip-
tor training. Also, [Yang et al.|[2017]] propose a set of methods called DeepC]jZE] which involve augmenting
the PN-Net architecture with an extra stream. This extra stream learns a complementary descriptor: that is,
a descriptor which is intended to help the descriptor output by the PN-Net stream. The authors experiment
with complementary descriptors that are either real vectors compared with Euclidean distance, or binary
vectors compared with Hamming distance. The final dissimilarity between two patches is taken as the prod-
uct of the distance between descriptors from the PN-Net stream and the distance between descriptors from
the complementary stream.

Mishchuk et al.|[2017]] propose HardN eiF_7], which has the same network architecture as L2-Net, but uses
a much simpler loss. This loss maximises the difference in Euclidean distance between the closest positive
and closest negative example in each batch and is formulated as follows. Each batch ¢ = 1,2,...,n has
exactly one pair of patches corresponding to the same 3D point, whose descriptors are a; and p,. Also, batch
1 has two sets of patches that do not correspond, whose descriptors form the sets A; and P;. The loss is then

1< o .
L= S {01+ =il min{ g o —pll i e i} -

The authors explore the effect of batch size on performance, finding that false positive rates decline with
increasing batch size until the batch size reaches 512 after which performance saturates. The use of this loss
can be seen as a local hard negative mining strategy. Note also that the way the triplets are formed does not
require the network to be three-streamed, in contrast to other triplet-based approaches such as TFeat [Balntas

25 Code for PN-Net is available at ht tps://github.com/vbalnt /pnnet.
26 Code for DeepCD is available athttps://github.com/shamangary/DeepCD.
27 HardNet code and pre-trained model are available at ht tps: //github.com/DagnyT/hardnet!
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et al.,2016b].

Wei et al.| [2018]] propose a new pooling method, called subspace pooling (SP), which enables invariance
to a range of geometric deformations such as circular shifts, flipping and in-plane rotation. The basic idea of
SP is to model the convolutional feature maps as the linear subspace spanned by their principal components.
The authors show that the proposed SP is invariant to all the geometric changes that can be expressed as
column permutations of the matrix formed by the feature maps from the last convolution layer stacked as
one dimensional features. SP is therefore similar to the bilinear pooling function in|Lin et al.| [2015], which
is equivalent to spatial reordering. Integrating the proposed pooling method with models such as HardNet or
TFeat, substantially improves matching results for those models.

Global Losses. TGLOSSFEI [Kumar B. G. et al., [2016] is another triplet network, in the sense that the net-
work is applied to three patches at a time during training. However, it replaces the triplet loss with a global
loss. This global loss involves the mean p and variance Ji of the distribution of Euclidean distances be-
tween descriptors of matching patches, as well the equivalent mean y_ and variance o for non-matching
patches. The intent is to keep the sum of variances ai + 02 small while ensuring that the different of the
means (i — p4 is large.

Similarly to DeepDesc, L2-Ne [Tian et al.l 2017] also uses CNNs to learn high-performance 128-
dimensional descriptors whose Euclidean distances reflect patch similarity. However, L2-Net has a CNN
with 7 convolutional layers, a final layer that normalises the outputs to unit Euclidean length, and batch nor-
malisation is employed during training, whereas DeepDesc’s network has only 3 convolutional layers and
no batch normalisation is used. Also, L2-Net abandons DeepDesc’s idea of mining hard samples and instead
uses batches consists of p := 128 correctly-matching pairs of patches plus p?> — p non-matching pairs from
the same patches. This better models the rate of correct and incorrect matches to be expected in real data than
the triplet loss usually applied to a Siamese network. Also, L2-Net uses a loss function consisting of three
terms: one accounts for the relative distance between descriptors, one controls descriptor compactness, and
the other is an extra supervision imposed on the intermediate feature maps. Finally, as the output of L2-Net
approximates a zero-mean Gaussian distribution, the authors find that by applying the sign function to this
output they obtain a highly-effective set of binary descriptors.

The main idea of global orthogonal regularisation (GORPE] [Zhang et al.,|2017] is to force features to be
“spread-out” in the descriptor space in order to fully utilize the expressive power of that space. This regu-
lariser encourages randomly-sampled non-matching descriptors to resemble uniformly-distributed points on
the unit sphere embedded in R?, where d is the dimension of the descriptor space. It does so by forcing the
sample mean and second moment of the inner product of the descriptors of non-matching pairs to be close
to zero and 1/d respectively. The authors show that adding this loss to models such as DeepDesc or TFeat
(discussed above) results in better patch matching.

28 Matlab code and pre-trained models are available at https: //github.com/vijaykbg/deep-patchmatch,

29 A Matlab implementation of L2-Net with pre-trained models is available at https://github.com/yuruntian/
L2—-Net.

30" A TensorFlow implementation is available at https://github.com/ColumbiaDVMM/Spread-out_Local_
Feature_Descriptor.


https://github.com/vijaykbg/deep-patchmatch
https://github.com/yuruntian/L2-Net
https://github.com/yuruntian/L2-Net
https://github.com/ColumbiaDVMM/Spread-out_Local_Feature_Descriptor
https://github.com/ColumbiaDVMM/Spread-out_Local_Feature_Descriptor
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Histogram Losses. Most of the systems discussed above, including PN-Net, L2-Net and HardNet, are
trained to minimise a pairwise or triplet loss, with or without some hard positive or negative mining, but
they are evaluated in terms of mean average precision (mAP), which is the area under the precision-recall
curve. Would one not expect higher mAP if one were to train such systems to directly maximise mAP? He
et al.| [2018b]] propose DOAP (descriptors optimised for average precision) which does exactly that, using
the same network architecture as L2-Net and HardNet. The authors propose methods for generating both
real-valued and binary descriptors. It is not immediately obvious how to effectively approximate the mAP
with a differentiable objective function. The authors do so based on results from their own paper [He et al.|
2018al] on hashing and learning binary embeddings, which are based on the idea of building losses using
histograms [Ustinova and Lempitsky} |2016]. In particular, they compute a histogram of the Euclidean dis-
tances between a query descriptor and all descriptors in a given minibatch, treating all descriptors in a given
bin as “ties” which have an equal distance from the query descriptor. They then plug this histogram into an
efficient tie-aware formulation of average precision from McSherry and Najork|[2008]]. To make this formu-
lation of average precision differentiable, they replace the discrete histogram counting operation by partially
assigning each inter-descriptor distance to its two closest histogram bins with linear interpolation.

While the basic DOAP descriptors already demonstrate state-of-the-art performance on standard bench-
marks as we discuss in Section[5] the authors also experiment with two improvements. The first improvement
(DOAP-ST) is to add a spatial transformer module [Jaderberg et al., 2015] to make matching more robust
to challenging levels of geometric noise and illumination change. The second improvement (DOAP-LM) is
to use label mining, which is a clustering method that avoids forcing the system to discriminate between
visually similar patches that correspond to distinct 3D points, such as patches from different windows of the
same style on the same building.

4.3 Learning binary descriptors with CNNs

Having seen some methods for learning binary descriptors in Section [3.3] it is not surprising that deep-
learning methods have also been designed to tackle this problem. Indeed, some of the methods discussed
in Section 4.2 such as L2-Net [Tian et al.| [2017], also have binary variants. However, such methods essen-
tially apply the sign function to each component of a real descriptor vector, and better-performing alternative
methods have been proposed that are specifically designed to learn binary features.

DeepBilEr] [Lin et al., 2016 is an unsupervised deep-learning approach to learning compact binary de-
scriptors for efficient visual object matching. The main idea is to optimise the parameters of a network using
a combination of three losses. The first loss forces the binary descriptors to preserve the local data structure
by minimising the quantisation loss when the activations of the last layer are projected into binary descrip-
tors. The second loss encourages each bit of the binary descriptor to be evenly distributed, with the intention
of making the descriptor more discriminative. Finally, the third loss encourages the descriptor to be invariant
to rotations, simply by penalising changes in the descriptor if the input patch is rotated.

31 Code available athttps://github.com/kevinlin31ltw/cvprl6-deepbit.


https://github.com/kevinlin311tw/cvpr16-deepbit

22 G. Csurka, C. R. Dance and M. Humenberger

DBD-MQ (deep binary descriptor with multi-quantisation) [[Duan et al., 2017a]] is another unsupervised
descriptor learning method. The authors propose a novel and effective approach to quantising real descrip-
tors that they call a K -autoencoder network. This consists of K autoencoders, each of which uses a c-bit
binary representation of a given real descriptor. They experiment with ¢ = 16, 32 and 64 and find that K = 4
gives the best mAP on a matching task. The binary descriptor is the result of concatenating the K binary
representations. The autoencoders are trained by analogy with the k-means clustering algorithm: given a real
descriptor, they find the autoencoder giving the least reconstruction error; then they backpropagate the error
associated with that descriptor through that autoencoder alone.

4.4 End-to-end detection and description of local features

Relative to the number of deep descriptors, only a few end-to-end deep models have been proposed that aim
to learn the entire detection and description pipeline (Figure[T). This is in spite of the fact that most hand-
crafted detectors rely on convolutional filters just like CNNs, as well as the fact that one motivation for deep
learning is to work directly with raw input rather than relying on the output of handcrafted (and therefore
suboptimal) preprocessing.

Yi et al.| [2016a] appear to have been the first authors to propose a fully end-to-end approach to feature
detection and description. Their LIFTFE] (learned invariant feature transform) network is composed of three
CNN components that feed into each other (see Figure[9): a detector, an orientation estimator and a descrip-
tor. These components are linked with two spatial transformers [Jaderberg et al., 2015] that geometrically
manipulate the image patches while preserving differentiability. The first spatial transformer crops the input
patch to give a smaller patch centred at the point output by the detector, while the second rotates this smaller
patch to the angle determined by the orientation estimator. The authors use the TILDE detector [Verdie
et al., |2015]]. At training time, they modify TILDE to ensure differentiability by replacing non-maximum
suppression with a softargmax function, which is defined as follows. If S(y) € R notes the score for image
coordinate y output by TILDE for a patch P with domain dom(P), then the estimated location of the feature
point 1s

Zyedom(P) yeﬁS(y)
eﬂs(y)

softargmax(S) := >
yEdom(P)

where 8 € R is a hyperparameter. The orientation estimator relies on the CNN proposed by|Yi et al.| [2016b]]
which was designed to estimate orientations for matching purposesff] and which demonstrates significant
improvements over SIFT’s orientation estimator. Finally, DeepDesc [Simo-Serra et al., [2015b] is used for
the descriptor component, since it is a simple network, which does not require metric learning. The authors
found it impossible to learn the entire network from scratch. Instead, they initialise the weights by first learn-
ing the descriptor, then using that descriptor to learn the orientation estimator, and then using the orientation
estimator and descriptor to learn the detector. Finally, the whole network is trained end-to-end with quadru-

32 Code and pre-trained models are available at https://github.com/cvlab—epfl/LIFT,
3 Code is available atht tps://github.com/cvlab-epfl/learn-orientation,


https://github.com/cvlab-epfl/LIFT
https://github.com/cvlab-epfl/learn-orientation
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Fig. 9 Top: The LIFT pipeline from . Given an input patch P, LIFT applies a detector (DET) followed by
a softargmax and a crop operation to provide a smaller patch p that lies within P. The smaller patch is fed to an orientation
estimator (ORI) and rotation operation which provides rotated patches as input for a network that computes descriptors (DESC).
Bottom: LIFT’s Siamese training architecture that works with quadruplets of patches. Patches P! and P2 (blue) correspond to
different views of the same physical point and are used as positive examples to train the descriptor (DESC). Patch P3 (green)
shows a different 3D point which serves as a negative example for DESC. Finally patch P* (red) contains no distinctive feature
points and is only used as a negative example to train the detector (DET). (By courtesy of Kwang Moo Yi.)

plets of patches, as shown in Figure[J] At test time, scaled versions of the image are fed to the network, and
the detector generates score maps at each scale, which are processed by non-maximum suppression to give
keypoint locations. The orientation detector and descriptor are then applied only to patches at the detected
keypoint locations.

In contrast to the other end-to-end models discussed here, DELF@ (deep local features)
was designed to perform more accurate matching and geometric verification for large-scale image retrieval.
The authors use visual attention for keypoint selection, arguing that keypoint selection is important for both
accuracy and computational efficiency of retrieval systems, since a substantial fraction of local features are
irrelevant and may distract such systems. While visual attention based on deep neural networks had previ-
ously been employed for many other computer vision tasks [Hong et all 2015 [Xu et all} [2015], it had not
previously been used for image retrieval. The DELF pipeline has four main blocks: (i) dense feature extrac-
tion, using an intermediate output of a ResNet50 2016]; (ii) attention-based keypoint selection,

3 DELF code available at ht tps://github.com/tensorflow/models/tree/master/research/delf,


https://github.com/tensorflow/models/tree/master/research/delf 
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Fig. 10 Overview of the SuperPoint framework for self-supervised training of keypoint detectors from .
Keypoints are here referred to as interest points, consistent with the authors of that paper. (a) An initial interest point detector is
pre-trained using synthetic data. (b) Then the homographic adaptation procedure automatically generates pseudo-ground truth
interest points. (c) The pseudo-ground truth interest points are used to train the SuperPoint network that jointly extracts interest
points and descriptors from an image. (d) Homographic adaptation consists in averaging the response of a detector over a set
of random homographies. (e) The SuperPoint network consists of a single encoder whose output is fed to two decoders. (By
courtesy of Daniel DeTone.)

using a two-layer CNN with a softplus activation at the top (softplus is the function = — log(1 + exp(z)));
(iii) dimensionality reduction, using PCA; and (iv) indexing and retrieval, in which 40 local features from
each query image are matched with a database by nearest-neighbour search and the matches are geometri-
cally verified with RANSAC. The results show that DELF significantly outperforms pre-existing methods
for image retrieval in terms of its precision-recall curve. In particular, unlike other methods evaluated, it is
robust to queries that have no match in the database.

SuperPoint [DeTone et al.l 2018] is a framework for self-supervised training of keypoint detectors and
descriptors for multiple-view geometry problems. Given an input image, it jointly computes keypoint loca-
tions and descriptors in a single forward pass. As shown in Figure[T0} first a base keypoint detector is trained
on examples from a synthetic dataset consisting of simple geometric shapes for which the keypoint locations
are well defined. Then, to improve the repeatability of the detector and enlarge the set of stimuli to which
it responds, a process called homographic adaptation is applied, which essentially averages the output of
a detector over a suitably-chosen distribution of random homographies. Specifically, the authors define the
homographic adaptation fH4 of detector f applied to image I as the average

n

P = = ST HT (AUL(D)

=1
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where (H;)_, is a sequence of homographies. The keypoints detected by the homographic adaption of the
base keypoint detector, which the authors call pseudo-ground truth interest point locations, are collected and
used as training data for the SuperPoint network. This network has a single encoder whose output is fed into
a pair of decoders. One decoder performs interest point detection and the other computes descriptors. The
detector is trained with a cross-entropy loss, where labels are derived from the pseudo-ground truth interest
point locations. Meanwhile, the descriptor is trained using the sum of a hinge loss for pairs of descriptors that
are known to correspondent and another hinge loss for pairs of descriptors that are known to not correspond.

5 Performance comparisons

In this section, we begin by discussing performance comparisons of handcrafted local features on matching
and patch retrieval tasks (Section [5.1)) and move on to comparisons that also involve deep-learning-based
features (Section [5.2). Finally, we discuss an evaluation of the impact of the choice local features on the
complex task of image-based reconstruction (Section 5.3).

5.1 Comparisons of handcrafted local features

Heinly et al.|[2012]] analysed the performance of different handcrafted detector and descriptor pairings on
several datasets, namely the Harris, MSER, FAST, BRIEF, ORB, BRISK, SURF and SIFT detectors, and
the BRIEF, ORB, BRISK, SURF and SIFT descriptors. The authors examined the impact of both geometric
and non-geometric changes (blur, JPEG compression, exposure, day-to-night) on matching. They defined
the matching score as the ratio of the number of correct matches to the number of features detected in the
first image to be matched. In terms of matching scores and in the presence of non-geometric changes, the
results showed that BRIEF descriptors beat ORB, BRISK and even SIFT descriptors, and that they did so
whichever detector was used. However, as soon as there was any rotation between the images to match,
BRIEF descriptors performed awfully compared with ORB and BRISK descriptors. In general, in the pres-
ence of geometric changes, the matching scores for the SIFT detector and descriptor were consistently better
than those for the other detector-descriptor pairs.

Mishkin et al.| [2015] propose the wide multiple baseline stereo (WXBS) datase which consists of im-
age pairs with a variety of combinations of large changes in geometry, illumination, sensor, appearance and
modality. Every image pair is manually labelled with approximately 20 correspondences as ground-truth.
The authors explore matching visible-spectrum images with infrared images, matching images acquired
with different modes of magnetic resonance imaging, and even matching maps to satellite views (see Figure
[LT). They show that this is an extremely challenging benchmark and that using only one detector-descriptor
model at a time does not perform well. To quantify matching performance, the authors compare the number
of images for which at least 15 correct inliers to a homography are found. Of the detector-descriptor combina-

35 The WxBS dataset can be found athttp://cmp.felk.cvut.cz/wbs/index.html.


http://cmp.felk.cvut.cz/wbs/index.html
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Fig. 11 Example images from the WXBS wide-baselines dataset proposed by |Mishkin et a1.| [IZOISI]. WGABS stands for
viewpoint and appearance changes, WGSBS for viewpoint and modality changes, WLABS for lighting and appearance changes,
WGLBS for viewpoint and lighting changes, and WGALBS for viewpoint, appearance and lighting changes. (By courtesy of
Dmytro Mishkin.)

tions that the authors explorﬂ the best results are obtained with models that incorporate multiple detectors
and descriptors, such as those proposed by [Yang et al.| [2007]] and [Mishkin et al.| [2014]. However, in terms
of single-detector/descriptor approaches, an adaptive Hessian-affine detector was the best-performing detec-
tor, while SIFT and its variants including DAISY were the best-performing descriptors.
Furthermore, it was observed that most of the descriptors gain significantly from photometric normalisation.
One of the main problems in day-to-night matching and matching infrared images is the low number of
detected features. A possible approach addressing this problem is iiDoG [Vonikakis et al.} [2013]], where the
SIFT detector’s difference of Gaussians is normalised by sum of Gaussians, but this approach cannot be
easily be applied to other detectors.

[Maier et al.| [2017] presented a method to generate ground-truth matches based on the original ground
truth of well-known datasets, pointing out that previous notions of a “correct match” were ambiguous, partly
because they relied on arbitrarily-set thresholds. For instance, [Mikolajczyk et al.| [2003] used a threshold of
40% on an “overlap error criterion”, Mikolajczyk and Schmid| [2003]] used a threshold 50% on an “overlap
error criterion” whereas [Heinly et al/|[2012] used a threshold of 2.5 pixels on the location of keypoints. The
authors also conducted extensive tests on 133 keypoint-descriptor combinations on the HCI Training 1K

36 14 such combinations are explored in the poster associated with the paper, which can be found at http://cmp. felk.
cvut.cz/~mishkdmy/posters/wxbs-2015-poster.pdf, but only up to 13 combinations were tested, depending
on the dataset, in the paper itself.


http://cmp.felk.cvut.cz/~mishkdmy/posters/wxbs-2015-poster.pdf
http://cmp.felk.cvut.cz/~mishkdmy/posters/wxbs-2015-poster.pdf

From handcrafted to deep local features - Preprint 27

HEAsY BHARD B TOUGH

* DIFFSEQ # SAMESEQ «VIEWPT = ILLUM
48.11% MSTD 0.10% — 1.20%
48.75% RESZ 7.16% - 13.12%
58.07% BRIEF 10.50% - 16.03%
58.53%  BBoost 14.77% - 18.85%
60.15% ORB [14] 15.32% — 22.45%
65.12% DC-s TR 24.92% - 31.98%
66.67% SIFT 2547% — 33.56%
70.04% RSIFT 27.22% - 34.76%
74.35% DC-528 [TW 27.69% — 34.84%
76.70%  DDEsc [ & 28.05% — 37.69%
78.23% TF-R 30.61% — 38.23%
79.51% +DC-8 31.65% — 39.40%
81.63% +DC-S828 32.349% — 39.68%
81.65% TFE-M 32.64% — 39.83%
81.90% +SIFT 32.76% — 40.02%
81.92% +TF-M 34.29% — 40.23%
82.69% +TF-R 34.37% — 40.36%
83.03% +DDEsc 35.44% — 43.84%
83.24%  +RSIFT 36.77% o] s — 44.55%
] 20 40 60 80 100 0 20 40 60 80 100 100
Patch Verification mAP [%] Image Matching mAP [%] Patch Retrieval mAP [%]

Fig. 12 Mean average precisions (area under the curve) for patch verification, image matching and patch retrieval tasks in
the HPatches benchmark [2017). Before extracting descriptors, each patch is randomly perturbed by applying a
rotation, translation and anisotropic scaling, each of which is drawn from a uniform distribution. The colours of the markers
indicate the “difficulty” of this geometric-transformation noise, which corresponds to the ranges of the uniform distributions.
Triangular markers correspond to results from image sequences with viewpoint changes, while crosses correspond to image
sequences with photometric changes. Bars show the average of the six variants of each task. Bars with dashed borders and with
a + before the descriptor name indicate ZCA projected and normalised features. (By courtesy of Vassileios Balntas.)

flow [Kondermann et al.} [2016]), KITTI [Moritz and Andreas}, [2015]] and Oxford [Mikolajczyk and Schmid),
datasets. The best average accuracy was attained by the combination of the BRISK
detector and the FREAK [Alahi et al. [2012] binary descriptor, with an average accuracy of
81.5%, closely followed by the combination of the MSD [Tombari and Di Stefano, [2014] detector and the
optimised ConvOpt [Simonyan et al, [2014] descriptor. Meanwhile, the LATCH [Levi and Hassner, [2013]]
and BOLD [Balntas et al.| 2015]] descriptors performed poorly no matter which detector they were paired
with, having an average accuracy consistently under 60%.

[2017]] propose a dataset that was acquired in a shopping mall for benchmarking image-based
localisation algorithms. The authors compare the localisation performance of BRIEF, SURF, SIFT, COV

and RSIFT local features. COV is the authors’ name for the detector proposed by [Perd’och et al/ [2009],
which is like the Hessian-affine detector [Mikolajczyk and Schmid, 2004] but for two modifications. The
first modification is to use the scale-space maxima of the Hessian operator for the initial scale selection. The
second modification is that in place of computing a rotation for each patch, they use a gravity vector
2007]l, which corresponds to finding the vanishing point of vertical lines in an image. Meanwhile
RSIFT [Arandjelovié¢ and Zisserman| 2012]], also known as RootSIFT, is a simple variant of SIFT in which
each component x; of a SIFT descriptor x € R'2® is replaced by its square root \/Z;, noting that these
components are non-negative by definition. measure performance in terms of the fraction
of all query images whose camera position is estimated within a given distance from the ground truth and
whose angle is estimated to within 5°. The best performance was obtained with the affine-covariant COV
detector coupled with RSIFT descriptors. Of course, these results are for a shopping mall environment where
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the gravity vector is usually well defined and one would not expect the COV detector to be the best choice
for environments with less man-made constructions.

5.2 Comparisons involving deep-learning-based local features

In contrast to the papers just discussed, recent performance comparisons have tended to consider both hand-
crafted and deep-learning-based local features. Such comparisons are the focus of this section. In particular,
we discuss the work of [Zang et al.| [2017]], who compared handcrafted and deep-learning-based detectors,
of Balntas et al.|[2017]], who introduced a new large new dataset called HPatches for evaluating descriptors
from the perspective of patch verification, matching and retrieval tasks, as well as discussing three papers
[Wei et al.l 2018l [He et al.,|2018Db}, [Lenc and Vedaldi, |2018]] that made extensive use of the HPatches data.

Zang et al.|[2017] compare several handcrafted feature detectors with FAST [Rosten and Drummond)
2006], TILDE [Verdie et al., |2015], CovDet [Lenc and Vedaldi, 2016] and TCovDet [Zang et al., 2017]] on
multiple datasets{ﬂ The authors show that the repeatability TCovDet keypoints is significantly higher than
the repeatability of CovDet and TILDE keypoints. CovDet and TILDE keypoints in turn have higher re-
peatability than handcrafted methods (namely SIFT, SURF, MSER, Harris Laplace, Hessian Laplace, Harris
affine and Hessian affine detector) and FAST. In terms of matching scores, TCovDet performs best on two
out of three datasets and SIFT on the third dataset, which contains drastic background clutter changes that
seem to be handled less-well by TCovDet.

Balntas et al, [2017)] show that previous datasets (see Table [I) and protocols for evaluating local fea-
tures do not unambiguously specify all aspects of evaluation, leading to inconsistencies in results reported
in the literature. To overcome these weaknesses, the authors propose a new benchmark called HPatches.
This benchmark includes a large new dataset suitable for training and testing modern descriptors. It also
unambiguously defines evaluation protocols for several tasks such as matching, retrieval and classification.
The authors conducted an exhaustive evaluation comparing the handcrafted features SIFT, RSIF [Arand-
jelovi¢ and Zisserman, [2012]], BRIEF, ORB, BBoost [Trzcinski et al., 2015]], as well as the recent deep
descriptors DeepCompare (DC) [[Zagoruyko and Komodakis| [2015]], DeepDesc [[Simo-Serra et al., [2015b]]
and TFeat (TF) [Balntas et al., |2016b]. They also proposed two baseline descriptors, MSTD which is the
mean and the standard deviation of the patch, and RESZ which is a vector obtained by resizing the patch
to 6 x 6 and normalising it to have zero mean and unit variance. The results from [Balntas et al.| [2017]
are shown in Figure [I2] The learning-based descriptors were trained on the PhotoTourism [Winder, [2007]
dataset, which is different from HPatches. Evaluation was done on three benchmark tasks: patch verifica-
tion, image matching and patch retrieval. The authors also consider applying zero-phase component analysis
(ZCA) [Bell and Sejnowski, [1997]], which corresponds to multiplying a descriptor vector by C~'/2 where C
is the covariance matrix of all descriptor vectors. In most cases, post-processing the descriptors by applying
ZCA, followed by power law normalisation [[Arandjelovi¢ and Zisserman) 2012]] and Ly-normalisation sig-
nificantly improved the results, as is apparent in Figure[T2|where + indicates use of ZCA. This improvement

37 The datasets can be downloaded from https://www.dropbox.com/s/17a8zvni6ia5f9g/datasets.tar.gz,

38 Using a square root (Hellinger) kernel instead of the standard Euclidean distance to measure the similarity between SIFT
descriptors.


https://www.dropbox.com/s/l7a8zvni6ia5f9g/datasets.tar.gz
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Fig. 13 Patch verification, matching, and retrieval results from on the HPatches dataset from [2018]]. The same
notation is used as in Figure[T2} (By courtesy of Xing Wei.)

had already been observed in previous papers [Ke and Sukthankar, 2004} [Arandjelovi¢ and Zissermanl, 2012].

On the patch verification task in HPatches, deep-learning-based descriptors gave the best mean average
precision (mAP). The authors argue that this is because they were jointly optimised with their distance met-
ric to perform well in the verification task. On the image matching task, where descriptors are used to match
patches from a reference image to a target image, ZCA whitened and normalised RSIFT surprisingly outper-
formed the deep-learning-based descriptors. ZCA whitened and normalised RSIFT had almost the highest
mAP on the patch retrieval task. The authors observed that binary descriptors have a competitive mAP only
for patch verification. In particular, the learning-based binary feature BBoost in general outperformed the
handcrafted binary features especially on the patch verification task. Among the deep features, the best
matching and retrieval performance was obtained with DeepDesc, followed by TF. However, DeepDesc per-
formed worse on patch verification and of the deep-learning-based methods it has the highest computational
cost.

Several recent papers have used the HPatches benchmark dataset and protocol to evaluate other descrip-
tors. These include [2018], whose results are shown in Figure [T3] as well as
whose results are shown in Figure [T4] In Figure [T3] the highest mAP is attained by the subspace pooling
(SP) descriptors (as described in Section [#.2)) and kernelised subspace pooling (KSP) descriptors (in which
the marginal triplet loss was combined with a Gaussian kernel). However, these are closely followed by
BILINEAR, which is the model of applied for learning patch matching. Clearly, more recent
deep-learning-based approaches such as L2-Net and HardNet [Mishchuk et al.l 2017 sig-
nificantly outperform the previous results on HPatches as shown in Figure[I2} Furthermore, adding bilinear
or subspace pooling to L2-Net further improves performance on all tasks.
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Fig. 14 Patch verification, matching, and retrieval results on the HPatches dataset from [He et al. . The suffix -Lib
means that the model was trained on the Liberty set from the Photo-Tourism dataset [Winder} instead of HPatches, -ST
means that the model includes a spatial transformer network to estimate the geometric transformation, and -LM means that
clustering-based label mining was used during training. The same notation is used as in Figure[T2] (By courtesy of Kun He.)

Figure[I4]compares variants of DOAP with SIFT and other deep models. These results
are somewhat puzzling in the light of the Figure [T3] since the mAPs for L2-Net differ by large amounts
between the two figures. Assuming that both results are correct, it appears that the SP and KSP descriptors
of are outperformed on every task by DOAP: using the average precision as loss indeed
appears to improve the mAP on patch retrieval, image matching and patch verification tasks. Furthermore,
the two improvements to DOAP (spatial transformer and label mining) consistently improve the mAP. No-
tably, label mining increases mAP for image matching by over 6%. These results make DOAP-ST-LM the
best-performing descriptor on the HPatches benchmark at the time of writing.

Unlike the above performance comparisons that focus on descriptors or detector-descriptor combinations,
[Cenc and Vedaldi| [2018]] focus only on detectors. In particular, the authors propose an improved repeata-
bility measure for detector evaluation. The first improvement is to correct an error in the publicly-available
implementation of the repeatability score of [Mikolajczyk et al.| [2005]]. This error causes the repeatability
score to vary strongly if the detected regions are simply scaled (magnified) by a common factor, even though
the score had been explicitly designed to minimise such variation. This error concerned a heuristic used
for accelerating ellipse overlap computation, which had been applied at the wrong stage of the processing
pipeline. The second improvement reduces the dependency of the repeatability score on the number of re-
gions detected, which is a tuneable parameter of most detectors. This improvement consists in reporting the
average of the repeatability scores attained when 100, 200, 500 and 1000 keypoints are detected per image.

[Cenc and Vedaldi [2018]] also evaluate 11 existing detectors on 5 datasets using the improved repeatabil-
ity measure. One of these datasets, which the authors call HSequences, consists of 580 image pairs drawn
from the same set of 696 images as the HPatches dataset, making it the largest detector-evaluation dataset
at the time of writing. In the presence of large illumination changes, they find that the learning-based detec-
tor TILDE [Verdie et al 2015]] has a consistently higher repeatability than the other detectors considered.
However, in the presence of viewpoint changes, TILDE performs poorly since it aims only for translation
invariance and not for scale or affine invariance. Rather, given viewpoint changes, the Hessian affine detector
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Table 2 Basic properties of the descriptors evaluated in |Schonberger et al.| [2017]]. Per image average timings were measured
on the OxfordSk dataset. Extraction time includes detection time. (By courtesy of Johannes L. Schonberger.)

RSIFT RSIFT-PCA DSP-SIFT ConvOpt DeepDesc TFeat LIFT

Dimensionality 128 80 128 73 128 128 128
Size (bytes) 128 320 512 292 512 512 512
Platform CPU CPU CPU GPU GPU GPU GPU
Extraction (s) 9.3 10.5 23.7 49.9 243 11.8 2123
Matching (s) 0.14 0.11 0.14 0.10 0.14 0.14 0.14

tends to have the highest repeatability although it is often outperformed by CovDet [Lenc and Vedaldi,[2016]
and TCovDet [Zang et al.,|2017].

5.3 Comparison on image-based reconstruction task

The comparative evaluation proposed in Schonberger et al.| [2017]] goes beyond descriptor matching, to
also evaluate the performance of various descriptors on image-based reconstruction tasks using challenging
small- and large-scale datasets. Such image-based reconstruction pipelines, often match descriptors in order
to produce a graph of corresponding features in multiple views. All subsequent stages of such a pipeline
strongly depend on the quantity and the quality of these correspondences. In order to give practical insights,
the authors evaluate the impact of the choice of descriptor at four stages of such a pipeline: feature matching,
geometric verification, image retrieval, and sparse and dense modelling. They consider RSIFT as a baseline
descriptor, along with two advanced variants of it, RSIFT-PCA [Bursuc et al., 2015]] and DSP-SIFT [Dong
and Soatto, |2015]], and they compare these with ConvOpt, DeepDesc, TFeat and LIFT (see Section 4.1).
Except for LIFT, which is an end-to-end detector and descriptor network, SIFT’s difference-of-Gaussians
(DoG) keypoint detector was used for all descriptors and the learning-based approaches were trained on
DoG keypoints.

Table 2] shows basic properties of the evaluated descriptors from [Schonberger et al. [2017]]. We can see
that the extraction times of the descriptors vary by an order of magnitude with learned descriptors being up
to an order of magnitude slower than handcrafted descriptors, even though the latter run on a GPU. Among
the learning-based features, LIFT by far the slowest and as such it is clearly not a practical alternative for
processing millions of images as required by some image-based reconstruction use cases. Meanwhile match-
ing times depend largely on the size of the descriptor. Since this size varies by less than a factor of two over
the set of descriptors evaluated, the matching times are also not highly variable.

Concerning the evaluation of the impact of the choice of descriptor at different stages of the image-based
reconstruction pipeline, we summarise the findings of |Schonberger et al.| [2017] as follows. In agreement
with Heinly et al.|[2012], the paper shows that for all stages of the pipeline, blur, day-night, and large view-
point changes seriously challenge all descriptors. The learned descriptors typically outperformed RSIFT
in terms of recall, while RSIFT performed better in terms of precision. Both RSIFT-PCA and DSP-SIFT
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outperformed the learned features for almost all metrics and matching scenarios tested. Among the learned
descriptors, ConvOpt was found to produce the best overall results and had the lowest variance across the
different datasets.

To evaluate the completeness and accuracy of the reconstruction results, the metrics used in|Schonberger
et al. [2017] were the number of registered images, the number of 3D points in the sparse SfM map output
by COLMAP [Schonberger and Frahm), 2016]], the number of verified image projections of sparse points and
their track lengths, the overall reprojection error, the pose accuracy of the camera locations, as well as the
number of reconstructed dense points after multi-view stereo (MVS) reconstruction using CMVS [Furukawa
and Ponce, 2010].

The experiments on several datasets, yielded the following observations: on small or easy datasets, the
learned descriptors generally perform on a par with or better than RSIFT in terms of the number of sparse
points, the number of image observations, and the mean track length; but they performed worse than RSIFT-
PCA and DSP-SIFT on these metrics. However, in terms of the number of registered images and the final
dense modelling performance and accuracy metrics, all methods produce roughly the same reconstruction
quality.

On larger and more challenging datasets, more variation was found when ranking the features using dif-
ferent metrics and datasets. In spite of the superiority of the learned descriptors over RSIFT observed in raw
matching evaluation, in the reconstruction evaluation RSIFT sometimes performed better and sometimes
worse than the learned descriptors. DSP-SIFT performed the best among all the methods, both in terms of
sparse and dense reconstruction results. It consistently produced the most complete sparse reconstructions
in terms of the number of registered images and reconstructed sparse points, and its dense models had the
most points as a result of accurate camera registration. DSP-SIFT has a slightly higher reprojection error
than other methods based on the DoG keypoint detector. This is potentially caused by the descriptor pool-
ing across multiple scales, which improves robustness but also results in less accurate keypoint localisation.
LIFT has the largest reprojection error and relatively short tracks on all datasets, indicating inferior keypoint
localisation performance as compared to the handcrafted DoG method.

Concerning camera-pose estimation, the ground truth was only available for three datasets: two small
ones, namely Fountain and Herzjesu [Strecha et al., 2008]; and the Quad6K from the Cornell BigSfM
dataset [Crandall et al., 2013]]. On the small datasets all methods performed similarly. On Quad6K, RSIFT
performed best, followed by TFeat and DCP-SIFT, with RSIFT-PCA performing worst. In summary, even if
learning approaches advanced, handcrafted features still perform on par or better than recent learned features
in the practical context of image-based reconstruction.

6 Conclusions

This paper gave an overview of keypoint detectors and descriptors, focussing on local features that are de-
signed to be localised accurately and consistently over time, rather than local features designed for extract-
ing semantics. We traced the evolution of such detectors and descriptors, from classic handcrafted methods
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through to more recent learning and deep-learning-based methods. Then we discussed existing benchmark
papers, which compare most of those methods. While this discussion may be useful for a reader interested
in selecting the best off-the-shelf local features type for a given task and data source at the time of writing, it
also suggests that better results may be possible by combining ideas from different state-of-the-art methods.
We highlight the following findings.

1.

2.

10.

Learned methods are a good choice when image content matters, especially for applications like image
matching.

Post-processing descriptors by whitening, power-law normalisation, and Ls-normalisation often improves
matching results.

Among the non-deep-learning-based models, ConvOpt shows good performance across different datasets
and tasks, but it was outperformed by several recent deep models. The deep models TFeat, L2-Net and
HardNet perform well, but they can be improved by (kernel) subspace pooling (SP, KSP) or bilinear
pooling, as well as by adding a global loss (TGLoss) or global orthogonal regularization (GOR).

The highest mean average precision on patch verification, matching, and retrieval tasks was attained by
DOAP, which directly optimises the average precision instead of using a pairwise or triplet loss.

. TConvDet was shown to provide the best keypoint repeatability compared to other detectors and com-

bined with SIFT descriptor provides good matching performance.

LIFT and SuperPoint are among the few networks that learn keypoint detection, geometric transformation
and keypoint description in a single network trained end-to-end.

SIFT and many of its variants show high robustness to viewpoint changes, and they remain a good option
for most applications.

In addition to the advantages of low memory footprint and matching time, deep-learned binary features,
such as binary DOAP, provide competitive results on recent benchmarks.

Extraction of handcrafted descriptors on a CPU is often much faster than extraction of learned descriptors
on a GPU, but there are some exceptions.

Even though learning approaches have advanced to the extent that they now attain the highest mean aver-
age precision on matching, recent benchmarks targeting their application in image-based reconstruction
and localisation pipelines suggest that handcrafted features still perform just as well or even better than
recent deep-learned features on such tasks. However, such benchmarks were conducted before methods
like SP, KSP and DOAP were published.

Since the applications of computer vision are diverse and the associated data is to a large extent unpre-

dictable, we would argue that learning detectors and descriptors is preferable to manually designing them.
By taking such a learning approach, future computer vision algorithms will best cope with different tasks,
imaging modalities and environments.
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