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Abstract

Interest point detection and local feature description are fundamental steps in many
computer vision applications. Classical approaches are based on a detect-then-
describe paradigm where separate handcrafted methods are used to first identify
repeatable keypoints and then represent them with a local descriptor. Neural
networks trained with metric learning losses have recently caught up with these
techniques, focusing on learning repeatable saliency maps for keypoint detection
or learning descriptors at the detected keypoint locations. In this work, we argue
that repeatable regions are not necessarily discriminative and can therefore lead
to select suboptimal keypoints. Furthermore, we claim that descriptors should be
learned only in regions for which matching can be performed with high confidence.
We thus propose to jointly learn keypoint detection and description together with
a predictor of the local descriptor discriminativeness. This allows to avoid am-
biguous areas, thus leading to reliable keypoint detection and description. Our
detection-and-description approach simultaneously outputs sparse, repeatable and
reliable keypoints that outperforms state-of-the-art detectors and descriptors on the
HPatches dataset and on the recent Aachen Day-Night localization benchmark.

1 Introduction

Accurately finding and describing similar points of interest (keypoints) across images is crucial
in many applications such as large-scale visual localization [46, 56], object detection [7], pose
estimation [32], Structure-from-Motion (SfM) [50] and 3D reconstruction [22]. In these applications,
extracted keypoints should be sparse, repeatable and discriminative in order to maximize the matching
accuracy with a low memory footprint.

Classical approaches are based on a two-stage pipeline that first detects keypoints [18, 27, 28, 29]
and then computes a local descriptor for each keypoint [4, 25]. Specifically, the role of the keypoint
detector is to find scale-space locations with covariance with respect to camera viewpoint changes
and invariance with respect to photometric transformations. A large number of handcrafted keypoints
have shown to work well in practice, such as corners [18] or blobs [25, 27, 28]. As for the description,
various schemes based on histograms of local gradients [4, 6, 24, 43], whose most well known
instance is SIFT [25], were proposed and are still widely used.

Despite this apparent success, this paradigm was recently challenged by several data-driven ap-
proaches willing to replace the handcrafted parts [14, 17, 26, 30, 33, 35, 49, 58, 59, 60, 63, 65].
Arguably, handcrafted methods are limited by the a priori knowledge researchers have about the
tasks at hand. The point is thus to let a deep network automatically discover which feature extraction
process and representation are most suited to the data. The few attempts for learning keypoint detec-
tors [9, 11, 14, 35, 49, 63] have only focused on the repeatability. On the other hand, metric learning
techniques applied to learning local robust descriptors [26, 33, 58, 59] have recently outperformed
traditional descriptors, including SIFT [21]. They are trained on the repeatable locations provided
by the detector, which may harm the performance in regions that are repeatable but where accurate
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Figure 1: Toy examples to illustrate the key difference between repeatability (2nd column) and
reliability (3rd column) for a given image. Repeatable regions in the first image are only located near
the black triangle, however, all patches containing it are equally reliable. In contrast, all squares in
the checkerboard pattern are salient hence repeatable, but are not discriminative due to self-similarity.

matching is not possible. Figure 1 shows such an example with a checkerboard image: every corner
or blob is repeatable but matching cannot be performed due to the repetitiveness of the pattern. In
natural images, common textures such as the tree leafage, skyscraper windows or sea waves can be
salient but hard to match because of their repetitiveness and unstable nature.

In this work, we claim that detection and description are inseparably tangled since good keypoints
should not only be repeatable but should also be reliable for matching. We thus propose to jointly
learn the descriptor reliability seamlessly with the detection and description processes. Our method
estimates a confidence map for each of these two aspects and selects only keypoints which are
both repeatable and reliable. More precisely, our network outputs dense local descriptors (one for
each pixel) as well as two associated repeatability and reliability confidence maps. The two maps
respectively aim to predict if a keypoint is repeatable and if its descriptor is discriminative, i.e., if it
can be accurately matched with high confidence. Our keypoints thus correspond to locations that
maximize both confidence maps.

To train the keypoint detector, we employ a novel unsupervised loss that encourages repeatability,
sparsity and a uniform coverage of the image. As for the local descriptor, we introduce a new loss
to learn reliable local descriptors while specifically targeting image regions that are meaningful for
matching. It is trained with a listwise ranking loss based on a differentiable Average Precision (AP)
metric, hereby leveraging recent advances in metric learning [5, 21, 39]. We jointly learn an estimator
of the descriptor reliability to predict which patches can be matched with a high AP, i.e., that are both
discriminative, robust and in the end that can be accurately matched. Experiment results show that
our elegant formulation of joint detector and descriptor selects keypoints which are both repeatable
and reliable, leading to state-of-the-art results on the HPatches and Aachen datasets. Our code and
models are available at https://github.com/naver/r2d2.

2 Related work

Local feature extraction and description have received a continuous influx of attention in the past
several years (cf. surveys in [8, 13, 44, 61]). We focus here on the learning methods only.

Learned descriptors. Most deep feature matching methods have focused on learning the descriptor
component, applied either on a sparse set of keypoints [3, 26, 30, 54, 55] detected using standard
handcrafted methods or densely over the image [12, 33, 48, 57]. The descriptor is usually trained
using a metric learning loss that seeks to maximize the similarity of descriptors corresponding to
the same patches and minimize it otherwise [1, 17, 26, 58, 59]. To this aim, the triplet loss [15, 53]
and the contrastive loss [38] have been widely used: they process two or three patches at a time,
steadily optimizing the global objective based on local comparisons. Another type of loss, labeled as
global in opposition, have been recently proposed by He et al. [21]. Inspired by advances in listwise
losses [20, 62], it consists in a differentiable approximation of the Average-Precision (AP), a standard
ranking metric evaluating the global ranking, which is directly optimized during training. It was
shown to produce state-of-the-art results in patch and image matching [5, 21, 39]. Our approach also
optimizes the AP but has several advantages over [21]: (a) the detector is trained jointly with the
descriptor, alleviating the drawbacks of sparse handcrafted keypoint detector; (b) our approach is
fully convolutional, outputting dense patch descriptors for an input image instead of being applied
patch by patch; (c) our novel AP-based loss jointly learns patch descriptors and an estimate of their
reliability, allowing in turn the network to minimize its effort on undistinctive regions.
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Learned detectors. The first approach to rely on machine learning for keypoint detection was
FAST [42]. Later, Di et al. [10] learn to mimic the output of handcrafted detectors with a compact
neural network. In [23], handcrafted and learned filters are combined to detect repeatable key-
points. These two approaches still rely on some handcrafted detectors or filters while ours is trained
end-to-end. QuadNet [49] is an unsupervised approach based on the idea that the ranking of the
keypoint salience are preserved by natural image transformations. In the same spirit, [64] additionally
encourage peakiness of the saliency map for keypoint detector on textures. In this paper, we employ
a simpler unsupervised formulation that locally enforces the similarity of the saliency maps.

Jointly learned descriptor and detector. In the seminal LIFT approach, Yi et al. [63] introduced
a pipeline where keypoints are detected and cropped regions are then fed to a second network to
estimate the orientation before going throughout a third network to perform description. Recently, the
SuperPoint approach by DeTone et al. [9] tackles keypoint detection as a supervised task learned from
artificially generated training images containing basic structures like corners and edges. After learning
the keypoint detector, a deep descriptor is trained using a second network branch, sharing most of
the computation. In contrast, our approach learns both of them jointly from scratch and without
introducing any artificial bias in the keypoint detector, which is also achieved by Georgakis et al. [14]
for the specific task of 3D matching from depth images by leveraging a region-proposal network.
Using a large-scale dataset of annotated landmark images, Noh et al. [33] trained DELF, an approach
targeted for image retrieval that learns local features as a by-product of a classification loss coupled
with an attention mechanism. In comparison, our approach is unsupervised and trained with relatively
little data. More similar to our approach, Mishkin et al. [31] recently leverage deep learning to jointly
enhance an affine regions detector and local descriptors. Nevertheless, their approach is rooted on
a handcrafted keypoint detector that generates seeds for the affine regions, thus not truly learning
keypoint detection. More recently, D2-Net [11] uses a single CNN for joint detection and description
that share all weights; the detection being based on local maxima across the channels and the spatial
dimensions of the feature maps. Similarly, Ono et al. [35] train a network from pairs of matching
images with a complicated asymmetric gradient backpropagation scheme for the detection and a
triplet loss for the local descriptor.

Compared to these works, we highlight for the first time the importance of treating repeatability and
reliability as separate entities represented by their own respective score maps. Our novel AP-based
reliability loss allows us to estimate patch reliability according to the AP metric while simultaneously
optimizing for the descriptor. In a single batch, each patch is typically compared to thousands of
other patches. In contrast to Hartmann et al. [19] that predicts reliability given fixed descriptors, our
novel loss tightly couples descriptors and reliability estimates. This capability cannot be achieved
with the standard contrastive and triplet losses used in prior work. Overall, being able to train a
keypoint detector from scratch while jointly predicting reliable descriptors is made possible by our
novel losses that are unlike any of the ones used in [9, 11, 14, 21, 35, 49].

3 Joint learning reliable and repeatable detectors and descriptors

The proposed approach, referred to as R2D2, aims to predict a set of sparse locations of an input
image I that are repeatable and reliable for the purpose of local feature matching. In contrast to
classical approaches, we make an explicit distinction between repeatability and reliability. As shown
in Figure 1, they are in fact two complementary aspects that must be predicted separately.

We thus propose to train a fully-convolutional network (FCN) that predicts 3 outputs for an image
I of size H ×W . The first one is a 3D tensor X ∈ RH×W×D that corresponds to a set of dense
D-dimensional descriptors, one per pixel. The second one is a heatmap S ∈ [0, 1]H×W whose goal
is to provide sparse yet repeatable keypoint locations. To achieve sparsity, we only extract keypoints
at locations corresponding to local maxima in S. The third output is an associated reliability map
R ∈ [0, 1]H×W that indicates the estimated reliability of descriptor Xij , i.e., likelihood that it is
good for matching, at each pixel (i, j) with i ∈ {1, . . . ,W} and j ∈ {1, . . . ,H}.
The network architecture is shown in Figure 2. The backbone is a L2-Net [58], with two minor
differences: (a) subsampling is replaced by dilated convolutions in order to preserve the input
resolution at all stages, and (b) the last 8× 8 convolutional layer is replaced by 3 successive 2× 2
convolutional layers. We found that this latter modification reduces the number of weights by a factor
5 for a similar accuracy. The 128-dimensional output tensor serves as input to: (a) a `2-normalization
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Figure 2: Overview of our network for jointly learning repeatable and reliable matches.

layer to obtain the per-pixel patch descriptors X , (b) an element-wise square operation followed by
an additional 1× 1 convolutional layer and a softmax to obtain the repeatability map S, and (c) an
identical second branch to obtain the reliability map R.

3.1 Learning repeatability

As observed in previous works [9, 63], keypoint repeatability is a problem that cannot be tackled
by standard supervised training. In fact, using supervision essentially boils down in this case to
imitating an existing detector rather than discovering potentially better keypoints. We thus treat the
repeatability as a self-supervised task and train the network such that the positions of local maxima
in S are covariant to natural image transformations like viewpoint or illumination changes.

Let I and I ′ be two images of the same scene and let U ∈ RH×W×2 be the ground-truth corre-
spondences between them. In other words, if the pixel (i, j) in the first image I corresponds to
pixel (i′, j′) in I ′, then Uij = (i′, j′). In practice, U can be estimated using existing optical flow
or stereo matching if I and I ′ are natural images or can be obtained exactly if I ′ was synthetically
generated with a known transformation, e.g. an homography [9], see Section 3.3. Let S and S′ be
the repeatability maps for image I and I ′ respectively, and S′U be S′ warped according to U .

Ultimately, we want to enforce the fact that all local maxima in S correspond to the ones in S′U . Our
key idea is to maximize the cosine similarity, denoted as cosim in the following, between S and
S′U . When cosim(S,S′U ) is maximized, the two heatmaps are indeed identical and their maxima
correspond exactly. While this is true in ideal conditions, in practice, local occlusions, warp artifacts
or border effects make this approach unrealistic. Therefore we reformulate this idea locally, i.e., we
average the cosine similarity over many small patches. We define the set of overlapping patches
P = {p} that contains all N ×N patches in {1, . . . ,W} × {1, . . . ,H} and define the loss as:

Lcosim(I, I ′, U) = 1− 1

|P|
∑

p∈P
cosim

(
S [p] ,S′U [p]

)
, (1)

where S [p] ∈ RN2

denotes the flattened N ×N patch p extracted from S, and likewise for S′U [p].
Note that Lcosim can be minimized trivially by having S and S′U constant. To avoid this, we employ
a second loss function that aims to maximize the local peakiness of the repeatability map:

Lpeaky(I) = 1− 1

|P|
∑

p∈P

(
max
(i,j)∈p

Sij − mean
(i,j)∈p

Sij

)
. (2)

Interestingly, this allows to choose the spatial frequency of local maxima by varying the patch size
N , see Section 4.2. Finally, the resulting repeatability loss is composed as a weighted sum of the first
loss and second loss applied to both images:

Lrep(I, I
′, U) = Lcosim(I, I ′, U) +

1

2
(Lpeaky(I) + Lpeaky(I

′)) . (3)

3.2 Learning reliability

In addition to the repeatibility map S, our network also computes dense local descriptors as well as
a heatmap R that predicts the individual reliability Rij of each descriptor Xij . The goal is to let
the network learn to choose between making descriptors as discriminative as possible or, conversely,
sparing its efforts on uniformative regions like the sky or the ground. To that aim, we propose a loss
that is minimized when the network can successfully predict the actual descriptor reliability.
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As in previous works [1, 17, 26, 58, 59], we cast descriptor matching as a metric learning problem.
More specifically, each pixel (i, j) from the first image I is the center of a M ×M patch pij with
descriptor Xij that we can compare to the descriptors {X ′uv} of all other patches in the second image
I ′. Knowing the ground-truth correspondence mapping U , we estimate the reliability of patch pij
using the Average-Precision (AP), a standard ranking metric. We ideally want that patch descriptors
are as reliable as they can be, i.e., we want to maximize the AP for all patches. We therefore follow
He et al. [21] and optimize a differentiable approximation of the AP, denoted as ÃP. Training then
consists in maximizing the AP computed for each of the B patches {pij} in the batch:

LAP =
1

B

∑

ij

1− ÃP(pij). (4)

Local descriptors are extracted at each pixel, but not all locations are equally interesting. In particular,
uniform regions or elongated 1D patterns are known to lack the distinctiveness necessary for accurate
matching [16]. More interestingly, even well-textured regions are also known to be unreliable from
their unstable nature, such as tree leafages or ocean waves. It becomes thus clear that optimizing
the patch descriptor even in such image regions can hinder performance. We therefore propose to
enhance the AP loss to spare the network in wasting its efforts on undistinctive regions:

LAP,R =
1

B

∑

ij

1− ÃP(pij)Rij + κ(1−Rij), (5)
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Figure 3: Visualization of our
proposed loss LAP,R.

where κ ∈ [0, 1] is a hyperparameter that represents the AP thresh-
old above which a patch is considered reliable. We found that
κ = 0.5 yields good results in practice and we use this value in
the rest of the paper. Figure 3.2 shows the loss function LAP,R

for a given patch pij as a function of ÃP(pij) and Rij . For reli-
able patches (i.e. AP > κ), the loss incites to maximize the AP.
Conversely, when AP < κ, the loss encourages the reliability to
be low. This way, learning converges to a region where there is
almost no gradients (at Rij ' 0), hence having barely any effect
on descriptors that belong to undistinctive image regions. Note that
a similar idea of jointly training the descriptor and an associated confidence was recently proposed in
[34], but using a triplet loss, which prevents the use of an interpretable threshold κ as in our case.

3.3 Inference and training details

Runtime. At test time, we run the trained network multiple times on the input image at different
scales starting at L = 1024 pixels and downsampling it by 21/4 each time until L < 256 pixels, where
L denotes the largest dimension of the image. For each scale, we find local maxima in S and gather
descriptors from X at corresponding locations. Finally, we keep a shortlist of the best K descriptors
over all scales where the score of descriptor Xij is computed as SijRij , i.e. requiring both repeatable
and reliable keypoints. In practice, processing a 1M pixel image on a Tesla P100-SXM2 GPU takes
about 0.5s to extract keypoints at a single scale (full image) and 1s for all scales.

Training data. We use three sources of data to train our method: (a) distractors from a retrieval
dataset [37] (i.e., random web images), from which we build synthetic image pairs by applying random
transformations (homography and color jittering), (b) images from the Aachen dataset [45, 47], using
the same strategy to build synthetic pairs, and (c) pairs of nearby views from the Aachen dataset
where we obtain a pseudo ground-truth using optical flow (see below). All sources are represented
approximately equally (about 4000 images each) and we study their importance in Section 4.4. Note
that we do not use any image from the HPatches evaluation dataset [2] during training.

Ground-truth correspondences. To generate dense ground-truth correspondences between two
images of the same scene, we leverage existing matching techniques. As in previous works [11, 35],
we use points verified by Structure-from-Motion that we enhance by designing a pipeline based on
optical flow tools to reliably extract dense correspondences. As a first step, we run a SfM pipeline [50]
that outputs a list of 3D points and a 6D camera pose for each image. For each image pair with
sufficient overlap (i.e., with some common 3D points), we then compute the fundamental matrix.
Next, we compute high-quality dense correspondences using EpicFlow [40]. We enhance it by adding
epipolar constraints in DeepMatching [41], the first step of EpicFlow that produces semi-sparse
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Figure 4: Sample repeatability heatmaps obtained when training the repeatability loss Lrep from
Eq. (3) with different patch size N . Red and green colors denote low and high values, respectively.

matches. In addition, we also predict a mask where the flow is reliable, as optical flow is defined at
every pixel, even in occluded areas. We post-process the output of DeepMatching by computing a
graph of connected consistent neighbors, and keeping only matches belonging to large connected
components (at least 50 matches). The mask is defined using a thresholded kernel density estimator
on the verified matches.

Training parameters. We optimize the network using Adam for 25 epochs with a fixed learning
rate of 0.0001, weight decay of 0.0005 and a batch size of 8 pairs of images cropped to 192× 192.

Sampling issues for AP loss. To have a setup as realistic as possible given hardware constraints, we
subsample “query” patches in the first image on a regular grid of 8× 8 pixels. To handle the inherent
imperfection of the optical flow, we define a single positive per query patch pij in the second image
as the one with the most similar descriptor within a radius of 3 pixels from the ground-truth position
Uij . Negatives are defined as more than 5 pixels away from Uij and sampled on a 8× 8 regular grid.

4 Experiments

4.1 Datasets and metrics

We evaluate our method on the full image sequences of the HPatches dataset [2]. The HPatches
dataset contains 116 scenes where the first image is taken as a reference and subsequent images in a
sequence are used to form pairs with increasing difficulty. This dataset can also be further separated
into 57 sequences containing large changes in illumination and 59 with large changes in viewpoint.

Repeatability. Following [28], we compute the repeatability score for a pair of images as the number
of point correspondences found between the two images divided by the minimum number of keypoint
detections in the image pair. We report the average score over all image pairs.

Matching score (M-score). We follow the definitions given in [9, 63]. The matching score is the
average ratio between ground-truth correspondences that can be recovered by the whole pipeline and
the total number of estimated features within the shared viewpoint region when matching points from
the first image to the second and the second image to the first one.

Mean Matching Accuracy (MMA). We use the same definition as in [11] where the matching
accuracy is the average percentage of correct matches in an image pair considering multiple pixel
error thresholds. When reporting the MMA, i.e. the average score for each threshold over all image
pairs, we exclude as in [11] a few image sequences having an excessive resolution. Furthermore, we
also report the MMA@3, i.e. the MMA for a specific error threshold of 3 pixels.

4.2 Parameter study

Impact of N . We first evaluate the impact of the patch size N used in the repeatability loss Lrep,
see Equation 3. It essentially controls the number of keypoints as the loss ideally encourages the
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Figure 5: MMA@3 and M-score for different patch sizes N on the HPatches dataset, as a function
of the number of retained keypoints K per image.

Repeatability Reliability Keypoint score MMA@3 M-score

X Rij 0.588 ± 0.010 0.361 ± 0.011
X Sij 0.639 ± 0.034 0.432 ± 0.033
X X RijSij 0.688 ± 0.009 0.470 ± 0.011

Table 1: Ablative study on HPatches. We report the M-score and the MMA at a 3px error threshold
for our method as well as our approach without repeatability (top row) or reliability (middle row)

network to output a single local maxima per window of size N × N . Figure 4 shows different
repeatability maps S obtained from the same input image with various N . When N is large, our
method outputs few highly-repeatable keypoints, and conversely for smaller values of N . Note that
the networks even learn to populate empty regions like the sky with a grid-like pattern when N is
small, while it avoids them when N is large. We also plot the MMA@3 and the M-score on the
HPatches dataset in Figure 5 for various N as a function of the number of retained keypoints K per
image. Models trained with large N outperform those with lower N when the number of retained
keypoints K is low, since these keypoints have a higher quality. When keeping more keypoints,
poor local maxima starts to get selected for these models (e.g. in the sky or the river in Figure 4)
and the matching performance drops. However, having numerous keypoints is important for many
applications such as visual localization because it augments the chance that at least a few of them
will be correctly matched despite occlusions or other noise sources. There is therefore a trade-off
between the number of keypoints and the matching performance. In the following experiments, and
unless stated otherwise, we use N = 16 and K = 5000.

Impact of separate reliability and repeatability. Our main contribution is to show that separately
predicting repeatability and reliability is key to improve the final matching performance. Table 1
reports the performance aggregated over 5 independent runs when (a) removing the repeatability map,
in which case keypoints are defined by maxima of the reliability map, or (b) removing the reliability
map and loss, i.e., only using the AP loss formulation of Equation 4. In both cases, the performance
drops in terms of MMA@3 and M-score. This highlights that repeatability is not well correlated with
the descriptor reliability, and shows the importance of estimating the reliability of descriptors. In the
following, we select an “average” model (with 0.686 MMA@3px) for all subsequent experiments.

Figure 6 shows the repeatability and reliability heatmaps obtained for a few images. Our network
trained with reliability loss is able to eliminate regions that cannot be accurately matched, such as the
sky 6(a,d) or repetitive patterns artificially printed on top of the pepper photography 6(c). Note that
the network has never seen the artificial patterns in 6(c) during training but is still able to reject them.
More complex patterns are also discarded, such as the river in 6(a), the paved ground in 6(d), various
1-D structures in 6(a,d) or the central white building with repetitive structures in 6(a). Even though
the reliability appears to be high in these regions, it is in fact slightly inferior, resulting in keypoints
being scored lower which are therefore not retained in the top-K final output (top row of Figure 6).

Single-scale experiments. To assess the importance of the multi-scale feature extraction (Sec-
tion 3.3), we evaluate our model at a single-scale (full image size). We obtain 0.651 MMA@3px
compared to 0.686 MMA@3px in the multi-scale setting.

4.3 Comparison with the state of the art

We now compare our approach to state-of-the-art detectors and descriptors on HPatches.
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(a) (b) (c) (d)
Figure 6: For one given input image (1st row), we show the repeatability (2nd row) and reliability
heatmaps (3rd row) extracted at a single scale, and overlaid onto the original image. The reliability
heatmap’s color scale is enhanced for the sake of visualization. Top-scoring keypoints are shown as
green crosses in the first image. They tend to avoid uniform and repetitive patterns (sky, ground, ...).

Transformations Data Method K=300 K=600 K=1200 K=2400 K=3000

Viewpoint graf DoG 0.21 0.0.2 0.18 - -
Perspective QuadNet 0.17 0.19 0.21 0.24 0.25

(VP) Ours 0.32 0.38 0.42 0.45 0.47

wall DoG 0.27 0.28 0.28 - -
QuadNet 0.3 0.35 0.39 0.44 0.46

Ours 0.62 0.62 0.65 0.70 0.71

Zoom and bark DoG 0.13 0.13 - - -
Rotation QuadNet 0.12 0.13 0.14 0.16 0.16
(Z+R) Ours 0.27 0.33 0.37 0.44 0.47

boat DoG 0.26 0.25 0.2 - -
QuadNet 0.21 0.24 0.28 0.28 0.29

Ours 0.33 0.39 0.45 0.54 0.57

Transformations Data Method K=300 K=600 K=1200 K=2400 K=3000

Luminosity leuven DoG 0.51 0.51 0.5 - -
(L) QuadNet 0.7 0.72 0.75 0.76 0.77

Ours 0.65 0.69 0.73 0.76 0.77

Blur bikes DoG 0.41 0.41 0.39 - -
(B) QuadNet 0.53 0.53 0.49 0.55 0.57

Ours 0.66 0.67 0.71 0.75 0.76

trees DoG 0.29 0.3 0.31 - -
QuadNet 0.36 0.39 0.44 0.49 0.5

Ours 0.28 0.36 0.45 0.55 0.6

Compression ubc DoG 0.68 0.6 - - -
(JPEG) QuadNet 0.55 0.62 0.66 0.67 0.68

Ours 0.40 0.45 0.54 0.65 0.68

Table 2: Comparison with QuadNet [49] and a handcrafted difference of gaussian (DoG) in terms of
detector repeatability on the Oxford dataset, with a varying number of keypoints K.

Detector repeatability. We first evaluate our approach in terms of repeatability. Following [49], we
report the repeatability on the Oxford dataset [29], a subset of HPatches, for which the transforma-
tions applied to sequences is known and include jpeg compression (JPEG), blur (Blur), zoom and
rotation (Z+R), luminosity (L), and viewpoint perspective (VP). Table 2 shows a comparison with
QuadNet [49] and the handcrafted Difference of Gaussians (DoG) used in SIFT [25] on this dataset
when varying the number of interest points. Overall our approach significantly outperforms these
two methods, in particular for a high number of interest points. This demonstrates the excellent
repeatability of our detector. Note that training on the Aachen dataset may obviously helps for street
views. Our approach performs well even for the cases of blur or rotation (bark, boat), while we did
not train the network for such challenging cases.

Mean Matching Accuracy. We next compare the mean matching accuracy on HPatches with
DELF [33], SuperPoint [9], LF-Net [35], mono- and multi-scale D2-Net [11], HardNet++ descriptors
with HesAffNet regions [30, 31] (HAN + HN++) and a handcrafted Hessian affine detector with
RootSIFT descriptor [36]. Figure 7 shows the results for illumination and viewpoint changes and the
overall performance. R2D2 significantly outperforms the state of the art at nearly all error thresholds.
This is at the exception of DELF in the case of illumination changes, which can be explained by their
fixed grid of keypoints while this subset has no spatial changes. Interestingly, our method significantly
outperforms joint detector-and-descriptors such as D2-Net [11], in particular at low level thresholds,
showing that our keypoints benefit from our joint training with repeatability and reliability.
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Figure 7: Comparison with the state of the art in term of MMA on the HPatches dataset.

Figure 8: Sample results using reciprocal nearest matching. Correct and incorrect correspondences
are shown as green dots and red crosses, respectively.

Method #kpts dim #weights 0.5m, 2◦ 1m, 5◦ 5m, 10◦
RootSIFT [25] 11K 128 - 33.7 52.0 65.3
HAN+HN [31] 11K 128 2 M 37.8 54.1 75.5
SuperPoint [9] 7K 256 1.3 M 42.8 57.1 75.5

DELF (new) [33] 11K 1024 9 M 39.8 61.2 85.7
D2-Net [11] 19K 512 15 M 44.9 66.3 88.8

R2D2, N = 16 5K 128 0.5 M 45.9 65.3 86.7
R2D2, N = 8 10K 128 1.0 M 45.9 66.3 88.8

Table 3: Comparison to the state of the art on the
Aachen Day-Night dataset [45] for the visual localiza-
tion task. The last row is performed with an increased
number of channels.

Training data HPatches Aachen Day-Night
W A S F MMA@3px 0.5m, 2◦ 1m, 5◦ 5m, 10◦
X 0.669 43.9 61.2 77.6
X X 0.689 42.9 60.2 78.6
X X X 0.667 42.9 61.2 84.7
X X X 0.686 43.9 63.3 86.7
X X X X 0.719 45.9 65.3 86.7

Table 4: Ablation study for the training data. W=web
images; A=Aachen-day images; S=Aachen-day-night
pairs from automatic style transfer; F=Aachen-day
real images pairs. For W,A,S we use random homo-
graphies; for F optical flow.

Matching score. At an error threshold of 3 pixels, we obtain a M-Score of 0.453 compared to 0.335
for LF-Net [35] and 0.288 for SIFT [25], demonstrating the benefit of our matching approach.

Qualitative results. Figure 8 shows two examples with a drastic change of viewpoint (left) and
illumination (right). Our matches cover the entire image and most of them are correct (green dots).

4.4 Applications to visual localization

We additionnaly provide results for the visual localization task on the Aachen Day-Night dataset [45],
as in D2-Net [11]. This corresponds to a realistic application scenario beyond traditional matching
metrics. The goal is to find the camera poses in night images (not included in training), given the
images taken during day in the same area with their known poses. We follow the “Visual Localization
Benchmark” guideline: we use a pre-defined visual localization pipeline based on COLMAP [51, 52],
with our matches as input. They serve to reconstruct a SfM model in which test images are registered.
Reported metrics are the percentages of successfully localized images within 3 error thresholds.

For the localization task, we include an additional source of data, denoted as S, comprising night
images automatically obtained from daytime Aachen images by applying style transfer. In Table 3,
we compare our approach to the state of the art on the Aachen Day-Night localization task. Our
approach outperforms all competing approaches at the time of submission. Table 4 shows the impact
of the different sources of training data, with N = 16 and K = 5000 kpts/img (same settings as the
last row but one in Table 3). We first note that training only with random web images and random
homographies already yields high performance on both tasks: state-of-the-art on HPatches, and
significantly better than SIFT, HAN, and SuperPoint for the localization task, showing the excellent
generalization capability of our method. Adding other data sources leads to small performance gains.

We point out that our network architecture is significantly smaller than other networks (up to 15×
less weights) while also generating much less keypoints per image. Our keypoint descriptors are
also much more compact (128-D only) compared to SuperPoint [9], DELF [33] or D2-Net [11] (resp.
256-, 1024- and 512-dimensional descriptors).

9



References

[1] V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk. Pn-net: Conjoined triple deep network for learning
local image descriptors. arXiv preprint arXiv:1601.05030, 2016. 2, 3.2

[2] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. Hpatches: A benchmark and evaluation of handcrafted
and learned local descriptors. In CVPR, 2017. 3.3, 4.1

[3] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk. Learning local feature descriptors with triplets and
shallow convolutional neural networks. In BMVC, 2016. 2

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In ECCV, 2006. 1
[5] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff. Deep Metric Learning to Rank. In CVPR, 2019. 1, 2
[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent elementary features. In

ECCV, 2010. 1
[7] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints.

In Workshop on statistical learning in computer vision, ECCV, 2004. 1
[8] G. Csurka, C. R. Dance, and M. Humenberger. From handcrafted to deep local invariant features. arXiv

preprint arXiv:1807.10254, 2018. 2
[9] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised interest point detection and

description. In CVPR, 2018. 1, 2, 3.1, 4.1, 4.3, 4.3, 4.4
[10] P. Di Febbo, C. Dal Mutto, K. Tieu, and S. Mattoccia. Kcnn: Extremely-efficient hardware keypoint

detection with a compact convolutional neural network. In CVPR, 2018. 2
[11] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler. D2-net: A trainable cnn

for joint detection and description of local features. In CVPR, 2019. 1, 2, 3.3, 4.1, 4.3, 4.3, 4.4
[12] M. E. Fathy, Q.-H. Tran, M. Zeeshan Zia, P. Vernaza, and M. Chandraker. Hierarchical metric learning and

matching for 2d and 3d geometric correspondences. In ECCV, 2018. 2
[13] S. Gauglitz, T. Höllerer, and M. Turk. Evaluation of interest point detectors and feature descriptors for

visual tracking. IJCV, 2011. 2
[14] G. Georgakis, S. Karanam, Z. Wu, J. Ernst, and J. Kosecka. End-to-end learning of key point detector and

descriptor for pose invariant 3D matching. In CVPR, 2018. 2
[15] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image retrieval: Learning global representations for

image search. In ECCV, 2016. 2
[16] K. Grauman and B. Leibe. Visual object recognition. Synthesis lectures on artificial intelligence and

machine learning, 2011. 3.2
[17] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. Matchnet: Unifying feature and metric learning

for patch-based matching. In CVPR, 2015. 1, 2, 3.2
[18] C. G. Harris, M. Stephens, et al. A combined corner and edge detector. In Alvey vision conference, 1988. 1
[19] W. Hartmann, M. Havlena, and K. Schindler. Predicting matchability. In CVPR, 2014. 2
[20] K. He, F. Cakir, S. A. Bargal, and S. Sclaroff. Hashing as tie-aware learning to rank. In CVPR, 2018. 2
[21] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018. 1, 1, 2, 2,

3.2
[22] J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Reconstructing the world* in six days*(as captured

by the yahoo 100 million image dataset). In CVPR, 2015. 1
[23] A. B. Laguna, E. Riba, D. Ponsa, and K. Mikolajczyk. Key. net: Keypoint detection by handcrafted and

learned cnn filters. arXiv preprint arXiv:1904.00889, 2019. 2
[24] S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary robust invariant scalable keypoints. In ICCV,

2011. 1
[25] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 1, 4.3, 4.3, 4.3
[26] Z. Luo, T. Shen, L. Zhou, J. Zhang, Y. Yao, S. Li, T. Fang, and L. Quan. ContextDesc: Local Descriptor

Augmentation With Cross-Modality Context. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 2, 3.2

[27] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal
regions. Image and vision computing, 2004. 1

[28] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV, 2004. 1, 4.1
[29] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and

L. Van Gool. A comparison of affine region detectors. IJCV, 2005. 1, 4.3
[30] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Working hard to know your neighbor’s margins:

Local descriptor learning loss. In NIPS, 2017. 1, 2, 4.3
[31] D. Mishkin, F. Radenovic, and J. Matas. Repeatability is not enough: Learning affine regions via

discriminability. In ECCV, 2018. 2, 4.3, 4.3
[32] J. Nath Kundu, R. MV, A. Ganeshan, and R. Venkatesh Babu. Object pose estimation from monocular

image using multi-view keypoint correspondence. In ECCV, 2018. 1
[33] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-scale image retrieval with attentive deep local

features. In CVPR, 2017. 1, 2, 2, 4.3, 4.3, 4.4
[34] D. Novotny, S. Albanie, D. Larlus, and A. Vedaldi. Self-supervised learning of geometrically stable

features through probabilistic introspection. In CVPR, 2018. 3.2
[35] Y. Ono, E. Trulls, P. Fua, and K. M. Yi. Lf-net: learning local features from images. In NIPS, 2018. 1, 2,

3.3, 4.3, 4.3
[36] M. Perd’och, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object

retrieval. In CVPR, 2009. 4.3

10

https://arxiv.org/abs/1802.07869
https://arxiv.org/abs/1802.07869
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