
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 900–909
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

900

Global Autoregressive Models for Data-Efficient Sequence Learning

Tetiana Parshakova
Stanford University⇤

tetianap@stanford.edu

Jean-Marc Andreoli
Naver Labs Europe

{jean-marc.andreoli,marc.dymetman}@naverlabs.com

Marc Dymetman
Naver Labs Europe

Abstract

Standard autoregressive seq2seq models are
easily trained by max-likelihood, but tend to
show poor results under small-data condi-
tions. We introduce a class of seq2seq mod-
els, GAMs (Global Autoregressive Models),
which combine an autoregressive component
with a log-linear component, allowing the use
of global a priori features to compensate for
lack of data. We train these models in two
steps. In the first step, we obtain an unnormal-
ized GAM that maximizes the likelihood of the
data, but is improper for fast inference or eval-
uation. In the second step, we use this GAM
to train (by distillation) a second autoregres-
sive model that approximates the normalized
distribution associated with the GAM, and can
be used for fast inference and evaluation. Our
experiments focus on language modelling un-
der synthetic conditions and show a strong per-
plexity reduction of using the second autore-
gressive model over the standard one.

1 Introduction

Neural sequential text generation models have
become the standard in NLP applications such
as language modelling, NLG, machine transla-
tion. When enough data is available, these mod-
els can be trained end-to-end with impressive re-
sults. Generally, inference and training proceed
in an auto-regressive manner, namely, the next
decoded symbol is predicted by a locally nor-
malized conditional distribution (the “softmax”).
This has several advantages: (i) the probability of
the sequence is already normalized, by the chain-
rule over local decisions, (ii) max-likelihood (ML)
training is easy, because the log-likelihood of the
full sequence is simply the sum of local CE (cross-
entropy) losses, (iii) exact sampling of full se-

⇤ Work conducted during an internship at NAVER Labs
Europe.

quences from the model distribution is directly ob-
tained through a sequence of local sampling deci-
sions.

However, these autoregressive models (AMs)
tend to suffer from a form of myopia. They have
difficulty accounting for global properties of the
predicted sequences, from overlooking certain as-
pects of the semantic input in NLG to duplicating
linguistic material or producing “hallucinations”
in MT, and generally through being unable to ac-
count for long-distance consistency requirements
that would be obvious for a human reader.1

The main contributions of this paper are as fol-
lows.

First, we propose a hybrid seq2seq formaliza-
tion, the Global Autoregressive Model (GAM),
that combines a local autoregressive component
with a global log-linear component, allowing the
use of a priori features to compensate for the lack
of training data. GAMs are related both to the
class of Energy-Based Models (EBM) and to that
of Exponential Families (EF), and inherit some
important properties from those: an intimate re-
lationship between training and sampling (EBM);
the identity of empirical and model expectations at
maximum-likelihood; convexity of log-likelihood
(EF).

Second, we propose a training procedure in two
steps. In the first step, we train through max-
likelihood a GAM, which however is unnormal-
ized and improper for fast inference or evaluation.
In the second step, we use this GAM to train (by
distillation) a second autoregressive model that ap-
proximates the normalized distribution associated
with the GAM, and can be used for fast inference

1To borrow terminology from Reinforcement Learning
(RL) (Sutton and Barto, 2018), such NLP models work by
“imitation learning”, without any representation of “objec-
tives” to be realized. While this defect can be mitigated in the
presence of large training sets, it can become serious when
this condition is not met.

901

and evaluation.
Third, we demonstrate the ability of GAMs to

be data-efficient, namely, to exploit the original
data better than a standard autoregressive model.
In order to clarify the core techniques and issues,
we design a simple class of synthetic data, con-
sisting of random binary strings containing “mo-
tifs” (specific substrings) that we can manipulate
in different ways. We show that, in limited data
conditions, GAMs are able to exploit the features
to obtain final autoregressive models that perform
better than the original ones.

The remainder of the paper is structured as fol-
lows. In Section 2, we provide some background
about autoregressive models, energy-based mod-
els, and log-linear models. In Section 3, we intro-
duce GAMs. In section 4, we describe our focus
on synthetic data. In Section 5, we explain our
training procedure. In Section 6, we comment on
related work. In Section 7, we describe our ex-
periments. In Section 8, we provide an analysis
of our results. We conclude with a discussion in
Section 9. Note that some additional explanations
and experiments are provided in the Supplemen-
tary Material, indicated by [SM].

2 Background

2.1 Autoregressive models (AM)

These are currently the standard for neural
seq2seq processing, with such representatives
as RNN/LSTMs (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014), ConvS2S (Gehring
et al., 2017), Transformer (Vaswani et al., 2017)).
Formally, they are defined though a distribution
r⌘(x|C), where C is an input (aka Context, e.g.
a source sentence in Machine Translation (MT)),
and x is a target sequence (e.g. a target sentence
in MT). We have:

r⌘(x|C)
.
=

Y

i

s⌘(xi|x1, . . . , xi�1, C),

where each s⌘(xi|x1, . . . , xi�1, C) is a normal-
ized conditional probability over the next symbol
of the sequence, computed by a neural network
(NN) with parameters ⌘. The local normalization
of the incremental probabilities implies the over-
all normalization of the distribution r⌘(x|C), and
consequently, the possibility of directly sampling
from it and evaluating the likelihood of training
sequences.

2.2 Energy-Based Models (EBM)
EBMs are a generic class of models, characterized
by an energy function U⌘(x|C) computed by a NN
parametrized by ⌘ (LeCun et al., 2006). Equiva-
lently, they can be seen as directly defining a po-
tential (an unnormalized probability distribution)
P⌘(x|C) = e

�U⌘(x|C), and indirectly the normal-
ized distribution p⌘(x|C) = 1/Z⌘(C) P⌘(x|C),
with Z⌘(C) =

P
x P⌘(x|C). A fundamen-

tal property of these models is that, for max-
likelihood training, the SGD updates can be com-
puted through the formula:2

r⌘ log p⌘(x|C) = r⌘ logP⌘(x|C) (1)
� Ex⇠p⌘(·|C)r⌘ logP⌘(x|C),

which, in principle, reduces the problem of train-
ing with unnormalized potentials to the problem
of sampling from them.

2.3 Log-Linear Models / Exponential
Families

Log-Linear models (Jebara, 2013) are the con-
ditional version of Exponential Families (Jordan,
2010). The general form of a log-linear model (for
the discrete case) is as follows:

p�(x|C) = 1/Z�(C) µ(x;C) eh�(C), �(x;C)i
,

with Z�(C) =
P

x µ(x;C) eh�(C), �(x;C)i. Here
�(x;C) is a vector of predefined real features of
the pair (x,C), which is combined by scalar prod-
uct with a real vector of weights �(C) of the same
dimension; µ(x;C) is an arbitrary “base mea-
sure”, which is fixed. These models, which al-
low to introduce prior knowledge through features
and have nice formal properties (see below), were
mainstream in NLP before the revival of neural ap-
proaches.

3 Proposal: GAMs

We now define Global Autoregressive Models
(GAMs). These are hybrid seq2seq models that
exploit both local autoregressive properties as well
as global properties of the full target sequence.
A GAM is an unnormalized distribution P⌘(x|C)
over sequences x, parametrized by a vector ⌘ =
⌘1 � ⌘2:

P⌘(x|C) = r⌘1(x|C) · eh�⌘2 (C), �(x;C)i
. (2)

2See (LeCun et al., 2006, p. 15), and [SM] for a deriva-
tion.

902

Here r⌘1(x|C) is an autoregressive seq2seq model
for generating x from input C, parametrized by
⌘2; �(x;C) is a vector of predefined real features
of the pair (x,C), which is combined by a scalar
product with a real vector �⌘2(C) of the same di-
mension, computed over the input C by a network
parametrized by ⌘2. The normalized distribution
associated with the GAM is p⌘(x|C) = P⌘(x|C)

Z⌘(C) ,
where Z⌘(C) =

P
x P⌘(x|C).

GAMs appear promising for the following rea-
sons:

• Features �(x;C) provide a simple way to draw
attention of the model to potentially useful as-
pects that may be difficult for the AM compo-
nent to discover on its own from limited data.

• GAMs are an instance of EBMs, where the po-
tential P⌘(x|C) is the product of the an AM
potential r⌘1(x|C) with a “log-linear” potential
e
h�⌘2 (C),�(x;C)i. Here the gradient relative to the

log-linear part takes the especially simple form:

r⌘2 log p⌘(x|C) = �(x;C) (3)
� Ex⇠p⌘(·|C) �(x;C).

• Log-linear models, on their own, while great at
expressing prior knowledge, are not as good as
AM models at discovering unforeseen regular-
ities in the data. Also, they are typically prob-
lematic to train from a log-likelihood perspec-
tive, because sampling from them is often un-
feasible. GAMs address the first issue through
the r component, and alleviate the second issue
by permitting the use of r as a powerful “pro-
posal” (aka “surrogate”) distribution in impor-
tance sampling and related approaches, as we
will see.

4 Experimental focus

While the motivation for GAMs ultimately lies in
practical NLP applications such as those evoked
earlier, in this paper we aim to understand some of
their capabilities and training techniques in simple
and controllable conditions. We focus on the un-
conditional (i.e. language modelling) case, and on
synthetic data. Our setup is as follows:

• We consider an underlying process ptrue that
generates binary sequences according to a well-
defined and flexible process. In this paper
we use PFSAs (Probabilistic Finite State Au-
tomata) to impose the presence or absence of

sub-strings (“motifs”) anywhere in the gener-
ated data, exploiting the intersection properties
of automata.

• Due to the dynamic programming properties of
PFSAs, it is possible to compute the true en-
tropy H(ptrue) = �

P
x ptrue(x) log ptrue(x)

of the process (see [SM]), as well as other
quantities (Partition Functions, Mean sequence
length); it is also possible to generate training
(D), validation (V), and test data (T) in arbi-
trary quantities.

• We employ an unconditional GAM of the sim-
ple form:

p�(x)
.
=

P�(x)

Z�
,with Z�

.
=

X

x

P�(x) and

P�(x)
.
= r(x) · eh�, �(x)i, (4)

where r is trained on D and then kept fixed, and
where � is then trained on top of r, also on D.

It should be noted that with r fixed in this
way, this formulation exactly corresponds to
the definition of an exponential family (Jordan,
2010), with r as base measure. In such mod-
els, we have two important properties: (i) the
log-likelihood of the data is convex relative to
the parameters �, and thus a local maximum
is also global; (ii) the max-likelihood value
�
⇤ has the property that the model expectation

Ex⇠p�⇤ (·) �(x) is equal to the empirical expec-
tation |D|�1P

x2D �(x) (“Moment Matching”
property of exponential families).

• We are specially interested in the relative data-
efficiency of the GAM compared to the AM r:
namely the ability of the GAM to recover a
lower perplexity approximation of ptrue than r,
especially in small training-set conditions.

5 Training procedure

5.1 Two-stage training

We consider a two-stage training procedure (see
Fig. 1).

903

r(x)

⇡✓(x)
P�(x)

Training-1

Training-2

Figure 1: Two-stage training. At the end of the pro-
cess, we compare the perplexities of r and ⇡✓ on test
data: CE(T, r) vs. CE(T,⇡✓).

Training-1 This consists in training the model
P� on D. This is done by first training r on D in
the standard way (by cross-entropy) and then by
training � by SGD with the formula (adapted from
(3)):

r� log p�(x) = �(x)� Ex⇠p�(·) �(x). (5)

The main difficulty then consists in computing an
estimate of the model moments Ex⇠p�(·) �(x). In
our experiments, we compare two Monte-Carlo
approaches (Robert and Casella, 2005) for ad-
dressing this problem: (i) Rejection Sampling (rs),
using r as the proposal distribution and (ii) Self-
Normalized Importance Sampling (snis) (Owen,
2017; Y. Bengio and J. S. Senecal, 2008), also us-
ing r as the proposal.

Rejection sampling is performed as follows.
We use r(x) as the proposal, and P�(x) =
r(x) e

�·�(x) as the unnormalized target distribu-
tion; for any specific �, because our features are
bounded between 0 and 1, we can easily upper-
bound the ratio P�(x)

r(x) = e
�·�(x) by a number

�; we then sample x from r, compute the ratio
⇢(x) = P�(x)

� r(x) 1, and accept x with probability
⇢(x). The accepted samples are unbiased samples
from p�(x) and can be used to estimate model mo-
ments.

Snis also uses the proposal distribution r, but
does not require an upper-bound, and is directly
oriented towards the computation of expectations.
In this case, we sample a number of points
x1, . . . , xN from r, compute “importance ratios”
w(xi) = P�(xi)

r(xi)
, and estimate Ex⇠p�(·) �(x)

through Ê =
P

i
w(xi)�(xi)P
i
w(xi)

. The estimate is biased
for a given N , but consistent (that is, it converges
to the true E for N ! 1).

Training-2 While Training-1 results in a well-
defined model P�(x), which may fit the data
closely in principle, we should not conclude

that P�(x) is convenient to use for inference —
namely, in language modeling, efficiently sam-
pling from its normalized version p�(x); as seri-
ously, because of the partition factor Z�, it is also
not obvious to evaluate the perplexity of P�(x) on
test data. In order to do both, one approach con-
sists in using a distillation technique (Hinton et al.,
2015), where, during training, one expends gener-
ous time towards producing a set of samples from
P�, for instance by Monte-Carlo (e.g. Rejection
Sampling) techniques, and where this set (which
may be arbitrarily larger than the original D) is
in turn used to train a new autoregressive model
⇡✓(x), which can then be used directly for sam-
pling or for computing data likelihood. This is the
approach that we use in our current experiments,
again using the original r(x) as a proposal distri-
bution.

5.2 Cyclical training

In the case of small |D|, the proposal distribution
r is weak and as a result the distillation process,
based on rejection sampling, can be slow. To ad-
dress this issue, we also consider a cyclical train-
ing regime that updates the proposal distribution
after distilling each batch of samples, with the in-
tention of reducing the rejection rate. Once the
process of distillation is finished, we use the aggre-
gated samples to train the final ⇡✓. The two-stage
training procedure is a variant of the cyclical one,
with a fixed proposal (see Algorithm 1 for more
details).

6 Related Work

(Hoang et al., 2018), working in a NMT con-
text, have a similar motivation to ours. They
first train an autoregressive seq2seq model (Trans-
former in their case) on bilingual data, then at-
tempt to control global properties of the generated
sequences through the introduction of a priori fea-
tures. They interpolate the training of the autore-
gressive model with training of a Moment Match-
ing component which tries to equate the features
expectations of the model with those of the data.
Contrarily to our approach, they do not directly try
to maximize likelihood in an integrated model.

(Andor et al., 2016) consider transition-based
neural networks, and contrast local to global nor-
malization of decision sequences, showing how
the global approach avoids the label bias prob-
lem in such tasks as tagging or parsing. They

904

Algorithm 1 Training
1: function TRAIN(D,V, T, ft, DsSize, tReg, mode)
2: r TRAINRNN(D,V, optAdam) . initialize and then train RNN
3: P� TRAINGAM(r,D, V, tReg, ft) . train � for a given proposal r
4: if mode = ‘two stage’ then . Training-2: distill in one step
5: eD, eV , DISTILLBATCH(P�, DsSize)
6: else if mode = ‘cyclic’ then . Cyclic-training: distill in several steps
7: eD {}; eV {}; flag� False
8: while | eD| < DsSize do . proceed to the distillation process
9: eDB , eVB , accptRate DISTILLBATCH(P�, bSize) . accptRate - acceptance rate of rs during distillation
10: eD.insert(eDB); eV .insert(eVB)
11: if not flag� then
12: r SINGLEUPDATERNN(r, eDB , optAdam) . improve proposal r
13: P� TRAINGAM(r,D, V, tReg, ft) . train � for a given proposal r
14: flag� EARLYSTOPPINGd(acceptRate) . check if acceptance rate has stopped improving
15: eD.insert(D); eV .insert(V) . add true data to the distilled one
16: ⇡✓ TRAINRNN(eD, eV , optAdam)
17: return ⇡✓

18: function TRAINGAM(P�, D, V, tReg, ft) . Training-1
19: ↵0 10 . initial learning rate
20: target mom GETMOMENTS(D, V, ft) . empirical moments of the given dataset
21: while not EARLYSTOPPING(`1 mom) do . check if `1 mom has stopped improving
22: model mom [0]⇥ |ft| . accumulate the model’s moments
23: ↵t ↵0

1+#epoch

24: for b 2 range(#updatesPerEpoch) do
25: mean mom GETMOMENTSGAM(P�, D, V, tReg, ft) . use rs or snis to estimate Ex⇠p�(·) �(x)

26: model mom (model mom + mean mom/(b� 1)) · b�1
b . moving average

27: r� target mom� mean mom . use Eq. 5 to compute gradients
28: � � + ↵t ·r�

29: `1 mom ktarget mom� model momk1
30: return P�

focus on inference as maximization, e.g. finding
the best sequence of tags for a sequence of words,
and consistent with that objective, their training
procedure exploits a beam-search approximation.
By contrast, our focus is on inference as sampling
in a language modelling perspective, on the com-
plementarity between auto-regressive models and
log-linear models, and on the relations between
training and sampling in energy-based models.

7 Experiments

We conduct a series of experiments on synthetic
data to illustrate our approach.

7.1 Synthetic data
To assess the impact of GAMs, we focus on dis-
tributions ptrue(x) that are likely to be well ap-
proximated by the AM r(x) in the presence of
large data. The first class of distributions is ob-
tained through a PFSA that filters binary strings
of fixed length n = 30, 0’s and 1’s being equally
probable (white-noise strings), through the condi-
tion that they contain a specific substring (“mo-
tif”) anywhere; here the relative frequency of se-
quences containing the motif among all sequences
varies from ⇠ 0.01 (shorter motifs |m| = 10) to
⇠ 0.001 (longer motifs |m| = 14).

We also consider mixtures of two PFSAs
(motif/anti-motif): the first (with mixture prob.

0.9) produces white-noise strings containing the
motif and the second (with mixture prob. 0.1)
strings excluding the motif.

From these processes we produce a training set
D, of size |D| varying between 5·102 and 2·104, a
validation set V of size 0.25·|D| (but never smaller
than 5 · 102 or bigger than 2 · 103) and a test set T
of fixed size 5 · 103.

7.2 Features
In a real world scenario, prior knowledge about
the true process will involve, along with predic-
tive features, a number of noisy and useless fea-
tures. By training the � parameters to match the
empirical moments, the GAM will learn to distin-
guish between these types. In order to simulate
this situation we consider feature vectors over our
artificial data that involve both types.

With x the full string and m the fixed motif used
in constructing the training data, we consider vari-
ations among the 7 binary features in the set F :

F = {m, m+0, m/2, d0, d1, d2, d3},

where m = 0 iff the motif m appears in x,
m+0 = 0 iff the motif followed by a zero (“super-
motif”) appears in x, m/2 = 0 iff an initial sec-
tion of the motif (“sub-motif”, roughly half the
size of m) appears in x. These three features are
chosen because they have some correlation with

905

(a) (b)

(c) (d)

Figure 2: Cross-entropy in nats per character and frequency of sampling motif, depending on |D|. Two-stage
Training. Features d0, d1, d2, d3 are on for all panels (ft[4:7] = {1111}). Panel (a): pure D, features m+0

(super-motif) and m/2 (sub-motif) on; (b): pure D, m (motif) and m/2 (sub-motif) on; (c) pure D, m on; (d)
mixture D, m on. The plain lines represent cross-entropy, the dashed lines motif frequency.

the process for generating the training data. By
contrast, the four remaining features are “distrac-
tors”: d0 = 0 iff x begins with a 0, d1 = 0 (resp.
d2 = 0, d3 = 0) iff a certain random, but fixed,
string of similar length to m (resp. of larger length,
of smaller length) appears in x. We test different
configurations of these features for training �, and
document the use/non-use of features with a bit-
vector ft of length |F |, for instance ft = 0111111
means that all features are exploited, apart from
m.3

3In the experiments reported here, one of the provided
features, m, is a detector of the motif actually present in the
data generating process, an extreme form of prior knowledge
used to illustrate the technique. In general, milder forms of
useful prior features can be provided. A simple formal exam-
ple is to consider one real-valued (non binary) feature for the
length, and one for the square of the length, an experiment

7.3 Implementation aspects
7.3.1 Autoregressive models
The AMs are implemented in PyTorch4 (Paszke
et al., 2017) using a 2-layered LSTM (Hochreiter
and Schmidhuber, 1997) with hidden-state size
200. The input is presented through one-hot en-
codings over the vocabulary V = {0, 1, hEOSi}.
These LSTMs are optimized with Adam (Kingma
and Ba, 2014), with learning rate ↵ = 0.001, and

that we did recently but do not report here; by matching the
data expectations of these two additional features, the model
is able to represent the mean and variance of length in the
data. Here the prior knowledge provided to the model just
tells it to be attentive to the distribution of length, a much
weaker form of prior knowledge than telling it to be attentive
to a specific motif.

4https://github.com/parshakova/GAMS-for-Data-

Efficient-Learning

906

with early stopping (patience = 20) over a valida-
tion set.

7.3.2 Training: Two-Stage and Cyclical
The implementation is described in (Algorithm 1).
Here we provide some additional details.

Training-1 For training P�(x) we test two
regimes in Eq. 5, namely rs and snis; in both
cases, we first train r(x) on the whatever D is
available, and use it as the proposal distribution.
During rs, we compute the model’s expectation
over 10 accepted samples, update the �’s accord-
ing to (5), and iterate. During snis, we keep a
buffer of the last 5 · 104 samples from r(x) to
compute the weighted average of the feature mo-
ments. For the training of �’s, we use a basic
SGD optimization with learning rate ↵(#epoch) =

↵0
1+#epoch ,↵0 = 10. To assess the quality of P�(x)
for early stopping during training, we use the dis-
tance between the empirical and model moments:

`1 mom =

����
1

|D|
X

d2D
�(d)�Ex⇠p�(·) �(x)

����
1

. (6)

Training-2 and Cyclical Training When dis-
tilling from P� in Training-2, we use a single
proposal r, and systematically produce a distilled
dataset of size DsSize = 2 · 104, which corre-
sponds to the highest value of |D| among those
considered for training r. In Cyclical Training, the
distillation process is performed in several stages,
with an evolving r for improving the rejection rate.

8 Results

8.1 Cross-entropy comparison
We conduct experiments to compare the cross-
entropy (measured in nats) between the initial AM
r(x) relative to the test set T and the final AM
⇡✓(x) also relative to T ; we vary the size of
|D| 2 {0.5, 1, 5, 10, 20} · 103, the regimes (tReg)
for Training-1 (rs or snis), the features employed,
the rarity of the motifs. Figure 2 depicts the re-
sulting curves at the end of the two-stage training
(plain lines).

Here we show only a few experiments (a more
extensive set is provided in the [SM]).

We observe that, for a small dataset size |D|,
there is a big gap between the CE of r(x) and
the CE of ⇡✓(x). As |D| increases, these cross-
entropies become closer to one another, but a large
gap persists for |D| = 5000.

We note that the presence of the “fully-
predictive” feature m results in a ⇡✓(x) that has
CE very close to the theoretical entropy, even in
low |D| regimes, where r on its own is very weak.5

Thus, not only is the distilled AM much better than
the initial AM, but this is an indication that P� it-
self (for which the cross-entropy is more difficult
to compute exactly) is a good approximation of the
true process.

By contrast, if the m feature is absent, then,
while ⇡✓ is still better than r in low |D| regimes,
it cannot reach the theoretical entropy in such
regimes, because features such as m0+ and m/2

can only partially model the data. With large |D|,
on the other hand, r on itself does a good job at
predicting the data, and P� adds little on top of its
r component.

Finally, we note that the two regimes for train-
ing P�(x), rs and snis, result in ⇡✓’s with similar
accuracies.

We also observe that with a good performance
of ⇡✓(x), the moments of motif feature on the dis-
tilled dataset are close to the true ones (see [SM]
Figure 4, 5, 7).

These trends are consistent across the experi-
ments with different motifs, as can be checked in
Table 3 and with the additional plots in the [SM].

8.2 Motif frequencies

In order to assess the predictive properties of
obtained AMs, we also compare the frequency
of motifs in strings sampled from r and from
⇡✓ (2 · 103 samples in total). From Figure 2
we see that when vary |D|, the frequency of
motifs (dashed lines) is aligned with the CE
performance. Namely, ⇡✓ produces a higher
fraction of strings with motif than r when |D| is
small (|D| 2 {0.5, 1, 5} · 103).

Detailed illustration To provide more intuition,
we provide an illustration from one experiment in
Table 1.

8.3 Mixture Dmam vs pure Dm

In our experiments, the strings in Dmam (motif-
anti-motif) contain a motif with p = 0.9. How-
ever, if not all of the samples in Dmam contain the

5The CE of a model relative to the true underlying pro-
cess (approximated by the test set T) can never be below the
entropy of this process, due to the KL-divergence being non-
negative.

907

1 true 101100010111110001000001001001
2 r 011111000010111110001110001011
3 ⇡✓ 111010100010111110000111111100
4 ft [m, , , d0, d1, d2, d3]
5 �’s [� 10.1, , ,�0.15,�0.06, 0.0,�0.14]
6 mom true [0.0, , , 0.47, 0.99, 1.0, 0.91]
7 mom r [0.95, , , 0.53, 0.99, 1.0, 0.91]
8 mom ⇡✓ [0.0006, , , 0.43, 0.99, 0.99, 0.91]
9 CEs true: 0.45, r: 0.56, ⇡✓: 0.47
10 motif freqs true: 1.0, r: 0.045, ⇡✓: 0.959

Table 1: Illustration. Setting is from Fig. 2, panel (c): n =30, motif = 10001011111000 (always present in D),
ft = 1001111, |D| = 5000, rs used for Training-1. Lines 1,2,3 show one example from true, r,⇡✓ respectively;
with training set of size 5000, r is only able to generate the motif a fraction of the time (0.045, see line 10), but
is better able to generate some submotifs (underlined); ⇡✓ generates the motif frequently (0.959), as illustrated on
line 3. With the features from ft (line 4), Training-1 produces a P� with first feature �m strongly negative (line 5),
meaning that P� strongly penalizes the absence of the motif; the “distractor” features d0, d1, d2, d3 get a weight
close to 0, meaning that they have little predictive power in combination with feature m. It is visible from lines
6,7,8 that ⇡✓ is much better able to approximate the true feature expectations than r [features expectations (aka
moments) under r (resp. ⇡✓) : Ex⇠r(·) �(x) (resp. Ex⇠⇡✓(·) �(x))] Finally (line 9), the CE of ⇡✓ relative to the
test set is close to the true entropy of the process, while that of r is much further away.

|D| m; mtf frq
rs

mtf frq
snis

m; CE(rs)
CE(snis) m; time(rs)

time(snis) mam; mtf frq
rs

mtf frq
snis

mam; CE(rs)
CE(snis) mam; time(rs)

time(snis)

500 0.998 0.967 2.92 0.997 1.003 4.7

1000 1.009 0.973 2.038 0.77 1.07 3.638

5000 0.995 0.967 0.756 1.12 0.99 1.365

10000 1.134 0.956 1.514 1.011 1.002 1.005

20000 1.497 0.961 0.938 0.965 1.005 0.975

Table 2: Comparison of the time for Training-1 in rs and snis; for motif 10001011111000; ft = 1011111;
H(ptrue) = 0.449 with pure D (m) and ft = 1001111; H(ptrue) = 0.482 with mixture of motif-anti-motif D
(mam).

tReg |D| m: CE(T,r)
CE(T,⇡✓)

m: CE(T,⇡✓)
H(ptrue)

m: mtf frq(⇡✓)
mtf frq(r) mam: CE(T,r)

CE(T,⇡✓)
mam: CE(T,⇡✓)

H(ptrue)
mam: mtf frq(⇡✓)

mtf frq(r)

rs 500 1.24± 0.07 1.19± 0.07 [32.0, 392.0] 1.23± 0.03 1.16± 0.03 [59.26, 433.33]

rs 1000 1.24± 0.07 1.16± 0.07 [23.87, 653.33] 1.21± 0.03 1.14± 0.03 [26.29, 233.33]

rs 5000 1.18± 0.08 1.09± 0.05 [3.59, 206.67] 1.16± 0.05 1.08± 0.04 [7.32, 130.0]

rs 10000 1.08± 0.1 1.04± 0.02 [0.89, 196.0] 1.02± 0.03 1.04± 0.03 [1.0, 4.97]

rs 20000 0.99± 0.01 1.02± 0.01 [0.81, 1.76] 0.99± 0.0 1.02± 0.0 [0.85, 1.04]

Table 3: Overall statistics: for Dm,motif 2 {10001010001, 01011101101, 001001100111, 1011100111001,
10001011111000}, ft 2 {1001111, 1011111, 0111111} and Dmam, motif 2
{01011101101, 001001100111, 1011100111001, 100010100011, 10001011111000}, ft 2 {1001111} .

motif, then the motif feature itself is not fully pre-
dictive. It can be seen in panel (d) of Figure 2 that
the ⇡✓ achieved with P� trained on mixture Dmam

has consistent behaviour with the results obtained
on the pure Dm of panels (a,b,c).

908

8.4 Regimes in Training-1

For training GAM we consider two methods, snis
and rs. As described in the previous sections, their
impact on P� leads to ⇡✓’s that have similar CE’s
and motif frequencies. Despite such resemblance
in terms of accuracy, these two methods differ in
terms of speed (see Table 2). Namely, when r is
close to white noise due to small |D|, then for the
rare events rs rejects most samples not containing
the motif due to the effect of the log linear term
and negative value of the component �m corre-
sponding to the m feature, while snis is able to
exploit all samples. Despite being faster than rs,
snis remains competitive in terms of CE.

8.5 Cyclical vs two-stage training

We conducted a small experiment to compare the
performance of cyclical training with two-stage
training in terms of speed and accuracy for a fixed
motif m and features ft (see [SM] Table 4, Fig-
ure 3). We observed that CEs of the obtained ⇡✓’s
were about the same for different values of |D| and
Training-1 regimes. On the other hand, there was
no systematic improvement in the training speed
of one method over the other.

9 Discussion

The basic idea behind GAMs is very simple. First,
we extend the representational power of the au-
toregressive model r by multiplying by a log-
linear potential, obtaining an unnormalized model
P� (Training-1). Then we try to “project” this ex-
tended representation again to an autoregressive
model ⇡✓ (Training-2). Our results showed that,
under favorable prior knowledge conditions, the fi-
nal ⇡✓ was able to perform as well, when trained
on small data, as the standard r, trained on large
data. During our experiments, we noticed that
training P� was actually easier than training ⇡✓

from it. Intuitively, the small number of param-
eters to be fitted in the log-linear model requires
less work and fewer data than the training of an
autoregressive component.6

6At a deeper level, there are extreme situations where the
P� obtained at the end of Training-1 can perfectly represent
the true process, but where no autoregressive model can ac-
tually fit P�: one way to obtain such situations consists in
generating binary strings that satisfy a certain cryptographic
predicate, associated with a specific feature; the importance
of this feature can be easily detected through Training-1, but
an autoregressive model has no chance of generalizing from
distilled or true data, even in large quantities.

It is interesting to relate our study to certain as-
pects of Reinforcement Learning (RL).

First, consider Training-2. There, we have
a “score” P� that we are trying to approximate
through an autoregressive model ⇡✓, which is ba-
sically a sequential “policy”. The main difference
with RL is that we are not trying to find a policy
that maximizes the score (which would be a bad
idea for language modelling, as it would tend to
concentrate the mass on a few sequences), but one
that approximates P� in a distributional sense; our
current distillation technique is only one way to
approach this problem, but other techniques more
in the spirit of RL are possible, a direction that we
leave for future work.

Second, consider Training-1. Our approach,
consisting in suggesting to the model a number of
prior features, might look too easy and suspicious.
But notice that in RL, one would typically directly
provide to the model an externally defined reward,
a very strong form of prior knowledge. Here, in-
stead, we “only” indicate to the models which fea-
tures it might attend to, and Training-1 then deter-
mines the “reward” P� through max-likelihood, a
milder form of prior knowledge, more respectful
for what the data has to say.7

Acknowledgements
Thanks to Matthias Gallé and Ioan Calapodescu for com-
ments on a previous version of this paper and to the anony-
mous reviewers for their detailed reading and feedback.

7We could say that while Training-2 addresses a question
directly related to Reinforcement Learning, Training-1 ad-
dresses one related to Inverse Reinforcement Learning (Rus-
sell, 1998; Ng and Russell, 2000): it derives a reward from
training evidence rather than imposing it externally.

909

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks.

Marc G. Bellemare, Will Dabney, and Rémi Munos.
2017. A Distributional Perspective on Rein-
forcement Learning. arXiv:1707.06887 [cs, stat].
ArXiv: 1707.06887.

Rafael C. Carrasco. 1997. Accurate computation of the
relative entropy between stochastic regular gram-
mars. Theoretical Informatics and Applications,
31:437–444.

Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and
Michael Riley. 2008. On the computation of the
relative entropy of probabilistic automata. Int. J.
Found. Comput. Sci., 19(1):219–242.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. CoRR. Cite
arxiv:1705.03122.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Cong Duy Vu Hoang, Ioan Calapodescu, and Marc
Dymetman. 2018. Moment Matching Training for
Neural Machine Translation: A Preliminary Study.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Tony Jebara. 2013. Log-Linear Models, Logistic Re-
gression and Conditional Random Fields.

Michael I. Jordan. 2010. Chapter 8 The exponential
family : Basics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yann LeCun, Sumit Chopra, Raia Hadsell,
Marc’Aurelio Ranzato, and Fu Jie Huang. 2006.
A Tutorial on Energy-Based Learning. Predicting
Structured Data, pages 191–246.

Andrew Y. Ng and Stuart J. Russell. 2000. Algorithms
for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Ma-
chine Learning, ICML ’00, pages 663–670, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Art Owen. 2017. Adaptive Importance Sampling
(slides).

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Christian P. Robert and George Casella. 2005. Monte
Carlo Statistical Methods (Springer Texts in Statis-
tics). Springer-Verlag, Berlin, Heidelberg.

Stuart Russell. 1998. Learning agents for uncertain en-
vironments (extended abstract). In Proceedings of
the Eleventh Annual Conference on Computational
Learning Theory, COLT’ 98, pages 101–103, New
York, NY, USA. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, pages 3104–
3112.

Richard S. Sutton and Andrew G. Barto. 2018. Rein-
forcement Learning: An Introduction, second edi-
tion. The MIT Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 6000–6010.

Y. Bengio and J. S. Senecal. 2008. Adaptive Impor-
tance Sampling to Accelerate Training of a Neural
Probabilistic Language Model. Ieee Transactions on
Neural Networks, 19(4):713–722.

https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
https://doi.org/10.1142/S0129054108005644
https://doi.org/10.1142/S0129054108005644
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1812.09836
http://arxiv.org/abs/1812.09836
http://www.cs.columbia.edu/~jebara/6772/notes/notes4.pdf
http://www.cs.columbia.edu/~jebara/6772/notes/notes4.pdf
http://dl.acm.org/citation.cfm?id=645529.657801
http://dl.acm.org/citation.cfm?id=645529.657801
http://statweb.stanford.edu/~owen/pubtalks/AdaptiveISweb.pdf
http://statweb.stanford.edu/~owen/pubtalks/AdaptiveISweb.pdf
https://doi.org/10.1145/279943.279964
https://doi.org/10.1145/279943.279964
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.1109/tnn.2007.912312
https://doi.org/10.1109/tnn.2007.912312
https://doi.org/10.1109/tnn.2007.912312

