Learning Common Representation from RGB and Depth Images

Giorgio Giannone'® Boris Chidlovskii® *

Abstract

We propose a new deep learning architecture for the
tasks of semantic segmentation and depth prediction from
RGB-D images. We revise the state of art based on the
RGB and depth feature fusion, where both modalities are
assumed to be available at train and test time. We propose
a new architecture where the feature fusion is replaced with
a common deep representation. Combined with an encoder-
decoder network for feature map extraction, the architec-
ture can jointly learn models for semantic segmentation and
depth estimation based on their common representation.
This representation, inspired by multi-view learning, offers
several important advantages, such as using one modality
available at test time to reconstruct the missing modality.
In the RGB-D case, this enables the cross-modality scenar-
ios, such as using depth data for semantically segmentation
and the RGB images for depth estimation. We demonstrate
the effectiveness of the proposed network on two publicly
available RGB-D datasets. The experimental results show
that the proposed method works well in both semantic seg-
mentation and depth estimation tasks.

1. INTRODUCTION

Visual scene understanding is a critical capability en-
abling robots to act in their working environment. Modern
robots and autonomous vehicles are equipped with many,
often complementary sensing technologies. Multiple sen-
sors aim to satisfy the need for the redundancy and robust-
ness critical for achieving the human level of the navigation
safety.

The most frequent case is RGB-D cameras collecting
color and depth information for different computer vision
tasks [} [13, 28]]. As information collected by the depth
camera is complementary to RGB images, the depth can
help decode structural information of the scene and improve
the performance on such tasks as object detection and se-
mantic segmentation [28]].
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Development of convolutional neural networks (CNNs)
boosted the performance of the image classification, object
detection and semantic segmentation tasks. The key contri-
bution of CNN models lies in their ability to model com-
plex visual scenes. Current CNN-based approaches provide
the state-of-the-art performance in semantic segmentation
benchmarks [4], 9].

When RGB images are completed with depth informa-
tion, the straightforward idea is to incorporate depth infor-
mation into a semantic segmentation framework. Different
methods have been developed including deep features pool-
ing, dense feature, multi-scale fusion, etc. 7,8, 111 18] 27].
Most recent methods, like FuseNet [T6], use an encoder-
decoder architecture, where the encoder part is composed
of two branches that simultaneously extract features from
RGB and depth images and fuse depth features into the
RGB feature maps. Moreover, training individual RGB and
depth models has been replaced with the joint learning. It
was shown that the semantics predictions of jointly learned
network can be fused more consistently than predictions of
a network trained on individual views [23]].

Figure 1. Scenarios for RGB-D data include semantic segmenta-
tion from RGB (1), depth (3) or both (1+3), depth prediction from
RGB (2) and depth completion from depth (4).

In this paper, we propose a new deep learning archi-
tecture for tasks of semantic segmentation and depth esti-
mation from RGB-D images. Usually, these tasks are ad-
dressed separately, with a special design for semantic seg-
mentation or depth prediction [7]. We develop a
unifying framework capable to cope with either task in dif-
ferent scenarios (see Figure [T).

We adopt the multi-view approach to RGB-D data,
where RGB and depth are two channels (modalities) provid-



ing complementary information about a visual scene. All
existing methods, whether they train individual models in-
dependently or jointly, adopt the fusion-based representa-
tion. The feature fusion takes benefit from the view comple-
mentarity to reduce the uncertainty of segmentation and la-
belling. The fusion-based approaches however require both
views to be available at train and test time.

We revise the fusion-based approach and replace it with
the common representation [24]. Adopting the principle of
the common representation gives a number of benefits well
known in the multi-view learning [2]]. First, it allows to
obtain the common representation from one view and then
reconstruct all other views. It can accomplish the task when
one view is unavailable due to technical or other reasons,
thus increasing the robustness and fault-tolerance of the sys-
tem. Working with one-view data at test time enables cross-
view scenarios rarely addressed in the state of art. In se-
mantic segmentation, when the RGB view is unavailable,
the depth view can be used to obtain the common represen-
tation and accomplish the semantic segmentation task. And
vice-versa, in the case of a depth estimation, the common
representation allows to use the RGB view to reconstruct
the depth of a scene or an object.

Second, the common representation is the central com-
ponent allowing to deploy the same architecture for both
RGB-D tasks. Representation common to RGB and depth
allows to enforce the consistency between the views and
improve the segmentation quality and depth estimation ac-
curacy.

Third, the proposed architecture encourages a higher
modularity of the deep network. Our proposal combines
the state of art components, the encoder-decoder networks
for semantic segmentation and a multi-view autoencoder for
the common representation. The system can then benefit
from any progress in individual components. The modu-
larity allows to upgrade a component without changing the
entire system, training and optimization routines.

The remainder of the paper is organized as follows. In
Section 2 we review the state of art of semantic segmenta-
tion and depth estimation for RGB-D images. In Section 3]
we introduce the multi-view deep architecture and describe
in details each component, the two-stage training and opti-
mization. Sectionfd]reports results of evaluating the network
on public NUY2 and SUN datasets; it also discusses some
open questions. Section[5]concludes the paper.

2. RELATED WORK

Depth representation. Depth information is rarely used
in any segmentation network as raw data, most methods use
HHA representation of the depth [11]. This representation
consists of three channels: disparity, height of the pixels
and the angle between normals and the gravity vector based
on the estimated ground floor. The color code provided by

HHA helps visualize depth information; it can reveal some
patterns that resemble RGB patterns.

Semantic segmentation and depth estimation. These two
fundamental tasks for RGB-D images are strongly corre-
lated and mutually beneficial, and most efforts were on
putting both views in one architecture. In particular, with
the success of CNN architectures, many methods aimed to
inject the depth information into the semantic segmentation
network [8} 13,1618}, 123} 29].

Ladicky at al. [[18] were first to replace single-view depth
estimation and semantic segmentation by a joint training
model. They considered both semantic label loss and depth
label loss when learning a classifier. Using properties of
perspective geometry, they reduced the learning of a pixel-
wise depth classifier to a simpler classifier predicting one of
fixed canonical depth values [18]].

Two separate CNN processing streams, one for each
modality, were proposed by Eitel at al. [8]; they are consec-
utively combined in a late fusion network. The method also
introduced a multi-stage training methodology for handling
depth data with CNNs. It used the HHA representation of
depth and the data augmentation scheme for robust learning
with depth images.

A unified framework for joint depth and semantic pre-
diction was proposed by Wang at al. [30]]. Given an image,
they first use a trained CNN to jointly predict a global lay-
out composed of pixel-wise depth values and semantic la-
bels. The joint network showed to provide more accurate
depth prediction than a state-of-the-art CNN trained solely
for depth prediction. To further obtain fine-level details, the
image is decomposed into local segments for region-level
depth and semantic prediction.

By considering RGB and depth channels as multi-modal
data, [23]] enforced the multi-view consistency during train-
ing and testing. At test time, the semantic predictions of
the network are fused more consistently than predictions of
a network trained on individual views. The network archi-
tecture uses a single-view deep learning approach to RGB
and depth fusion and enhances it with multi-scale loss min-
imization.

FuseNet [13]] developed an encoder-decoder type of net-
work, where the encoder part is composed of two branches
of networks that simultaneously extract features from RGB
and depth images and fuse depth features into the RGB fea-
ture maps as the network goes deeper.

Although most of the above methods apply the late fu-
sion, it is also possible to fuse depth information into the
early layers of fully convolutional neural network [16].
Coupled with the dilated convolution for later contextual
reasoning, it combines a depth-sensitive fully-connected
CRF with the previous convolution layers to refine the pre-
liminary result.

A step forward from the fusion approach is undertaken
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Figure 2. The architecture is composed of two encoder-decoder networks for RGB and depth images and the common representation
network. Depending on the setting, the depth network is trained with the segmentation labels or depth ground true values. Better seen in

colors.

by Hoffman et al.[14]; they designed a modality hallucina-
tion architecture for training an RGB object detection model
which incorporates depth information at training time. A
convolutional hallucination network learns a new and com-
plementary RGB image representation which is taught to
mimic convolutional mid-level features from a depth net-
work. At test time images are processed jointly through
the RGB and hallucination networks. Thus, information ex-
tracted from depth data is transferred to a network extract-
ing that information from the RGB data.

Depth Completion. The problem of completing the depth
channel of an RGB-D image has been addressed in [31]. In-
deed, it often the case that commodity-grade depth cameras
fail to sense depth for bright, transparent, and distant sur-
faces thus leaving entire holes in the depth images. They
train a deep network that takes a RGB image as input and
predicts dense surface normals and occlusion boundaries.
Those predictions are then combined with raw depth obser-
vations provided by the RGB-D camera to solve for depths
for all pixels, including those missing in the original obser-
vation.

2.1. Multi-view learning

In the previous section we reviewed different ways to
fuse RGB and depth feature maps. Meanwhile, there
exist alternative representations for multi-view data [2].
One such alternative, the common representation learning
(CRL), tries to embed different views of the data in a com-
mon subspace [2]. It allows to obtain a common represen-
tation from one view and use it to reconstruct other views.

Two complementary approaches to CRL are based on
canonical correlation analysis (CCA) and multi-modal au-
toencoders. CCA based approaches learn a joint representa-
tion by maximizing correlation of the views when projected
into the common subspace. Second approach to embed
two views is based on multi-modal autoencoders (MAEs)

[24]. The idea is to train an autoencoder able to perform
two kinds of reconstruction. Given one view, the model
learns both self-reconstruction and cross-reconstruction (re-
construction of the other view).

As CCA-based and MAE-based approaches appear to
be complementary, several methods tried to combine them
in one framework [30]]. For example, Correlational Neural
Network (CorrNet) [3] tried to explicitly maximize the cor-
relation between the views when projecting them into the
common subspace. We adopt the idea of CorrNet in our
architecture.

3. DEEP ARCHITECTURE

We aim to solve two fundamental tasks for RGB-D im-
ages: semantic segmentation and depth prediction. We as-
sume that we are given a training set of N RGB-D im-
ages (x;,d;), ¢ = 1,...,N. All x; and d; images are
assumed to be resized to width W and height H. Depth
images are in HHA representation and have the same value
range as RGB images, x;,d; € R7*Wx3 RGB im-
ages are annotated with y; € LA*W where L is the la-
bel set, L = {1,...,K}. In the case of depth estima-
tion, we assume to have additionally the ground true values
dy € REXW,

We propose an architecture composed of two separate
branches, one for each modality, which are consecutively
fed into a common representation network. Two individual
modality networks are of the encoder-decoder type, where
the encoder applies dilated convolution to extract an infor-
mative feature map, while the decoder applies “atrous” con-
volution at multiple scales to encode contextual information
and refine the segmentation boundaries. This choice is mo-
tivated by the recent success of the encoder-decoder archi-
tecture of DeepLabV2/V3 networks [4]. It has been also
used in FuseNet [13] and SegNet [1] and has showed good



segmentation performance.

Both RGB and depth encoders are initialized by the
Resnet101 model pretrained on the MS-COCO dataset. The
encoders generate the feature maps, which the decoders use
in "atrous” spatial pyramid pooling (ASPP) to robustly seg-
ment objects at multiple scales [4].

Feature maps generated by two modality branches are
fed into the common representation network implemented
in the form of a multi-view autoecoder [30]]. Unlike the
conventional fusion of RGB and depth feature maps, the
multi-view autoencoder allows to extract the shared repre-
sentation from either one or two views.

3.1. Training RGB network

Our architecture enables two different settings. In the
semantic segmentation (SS) setting, both RGB and depth
views are jointly used to segment an image. In the case
of segmentation and depth estimation (SS-D), we face the
multi-task setting and expect to achieve good results in both
tasks.

We first proceed by training two individual modality
branches (see the purple and blue sections in Figure [2).
Let 67 and A" be parameters of RGB and depth networks,
respectively. Let x! = g7(x;;60') be the feature map ex-
tracted from the last (fully connected) layer of the RGB de-

coder when applied to image x;, x! € R¥*H W Anal-
ogously, let d = g (d;; 0) be the feature map extracted
from depth /deco/der when applied to the depth image d;,
df c RdxH xW .

The network is trained in two stages. We first train two
modality branches, then we train the entire network. In the
first stage, we place a randomly initialized softmax classi-
fication layer on top of g/ and train the RGB network to
minimize the semantic loss of the training data. The seman-

tic loss L77, is defined as the cross-entropy loss

N
rgb = _ZP(Yz‘|§i)» 1
i=1

where X; is a pixel-wise prediction for image x;, y; is
the ground truth labels, P(y|x) = >_;log p(y;|z;), and
p(y;|z;) is the probability of semantic label y; at pixel j.

The RGB network is trained using the stochastic gradi-
ent descent on mini-batches of RGB images. After the con-
vergence, all parameters 7 of the network are kept for the
second stage, except the last layer which will be replaced
by the common representation and reconstruction layer.

3.2. Training depth network

Training the depth branch depends on the setting. In
the SS setting, the depth network is trained, similarly
to the RGB network, to minimize semantic loss L}’ =

- Zi\; P(y1~|ai)7 where d; is a prediction for depth im-
age d;.

In the SS-D setting, we train the depth branch to min-
imize the regression loss on the training depth data. We
tested several state-of-art proposals for the loss function Lg.
One is the scale-invariant loss [7]]; it measures the relation-
ships between points in the image irrespectively of the abso-
lute values. We also considered the standard L, and Huber
loss [10]. Less sensitive to outliers that the Lo loss, the
Huber loss is defined as L (d},d;) = > D(d;; — dij),

where )
D) = { -,

iflz] <1
otherwise.

2
with 8 = 0.5.

3.3. Common representation

Common representation network is implemented as a
multi-view autoencoder [3} 24]. It includes a hidden layer
and an output layer. The input to the hidden layer is two
feature maps x?,d” fed by two modality branches. Simi-
lar to conventional autoencoders, the input and output layer
has the same shape as the input, d x H’ x W', whereas the
hidden layer is shaped as k x H' x W', with k being often
smaller than d (in Figure[2] d=256 and k=128).

Given a two-view input z = (x?, d?), the hidden layer
computes an encoded representation as the convolution

h(z) = h(W, xxP + Wy xd” + b), 3)

where W, W are projection weights, b is a bias vector,
and h is an activation function, such as sigmoid or tanh.

The output layer tries to reconstruct z from this hidden
representation i(z) by computing

z" = g([Vx * h(Z),Vd * h(Z)} + bT)’ )

where V,, V4 are reconstruction weights, b,. is a output
bias vector, g is an activation function and [] is the concate-
nation operation.

Given feature maps {(x?,d?)}¥ ; from RGB and depth
branches, the common representation is designed to min-
imize the self- and cross-reconstruction errors. The first
minimizes the error of reconstructing x} from x! and d
from d?. The second one is the error of reconstructing x
from d? and d from x?.

To achieve this goal, we try to find the parameter val-
ues 04 = {W,, W, V,, V; b b,.} by minimizing the
reconstruction loss function Lye. = S0, L., with Lf
defined on the pair (x;, d;) as follows

I (2i, 9(h(2i))) + 1 (23, g (h(X7))) + 1 (24, g(A(d))), (5)

where [,. is the reconstruction error, I,.(x,x’) = ||x — x'||3.
Shorthands h(x;) and h(d;) denote the representations



h((xi,0)) and h((0,d;)) that are based only on a single
view. For each instance with 2 modalities x and d, h(x;)
refers to computing the hidden representation using only the
x-view. In other words, in Equation (3) for h(z), we set
dP = 0 and obtain h(z) = h(W, xxP + b).

In the reconstruction loss L, , the first term is the
usual autoencoder objective function which helps in learn-
ing meaningful hidden representations. The second term
ensures that both views can be predicted from the shared
representation of the first view alone. The third term en-
sures that both views can be predicted from the shared rep-
resentation of the second view alone.

In addition to the common representation and view re-
construction, we also considered a possibility of maximiz-
ing the view correlation, as suggested in CorrNet [3]. In
such a case, we try to maximize the correlation between the
hidden representations of the two views. The correlation
term can be included as the fourth term of L. in (), it
makes sure that the hidden representations of the two views
are highly correlated.

3.4. Objective function

Common representation allows to obtain the recon-
structed feature maps for both RGB and depth images as
f(g(xP)) and f(g(dP)). The entire set of network param-
eters is § = {67 6P 04}. The objective function to mini-
mize is then defined as

L=1L% 4 La+ ALpec, (6)

where the depth branch loss Ly is L’ in the SS setting and
Lg in the SS-D setting; A is a scaling parameter for the re-
construction loss. In the above formulation, the semantic,
depth and reconstruction losses are optimized jointly.

3.5. Training and optimization

The architecture is implemented on the PyTorch frame-
work. At the first stage, we train individual branches in-
dependently. In the SS setting, we train RGB and depth
branches with segmentation labels, they are denoted RGB-
SS and D-SS. Each branch is trained for 20,000 iterations
using SGD with momentum 0.9, batch size 24, and mini-

mizing the modality losses, L77, and Lg®. We retain the

model parameters #7 and 67 for the second stage.

In the SS-D setting, we train the RGB branch with seg-
mentation labels (RGB-SS) and the depth branch with depth
ground truth (D-D). The D-D branch is trained using the
scale irrelevant loss, standard Lo loss or the Huber loss. We
apply weight decay 0.0005 and the polynomial decay for
the learning rate, with the base LR 0.0001 and power 0.9.

In the second stage, we start with the two branch param-
eters O7 and 6P trained in the first stage, and refine them
as well as the common representation network #“ by mini-
mizing the objective function £ which combines semantic,

depth and reconstruction losses. We fine-tune the entire net-
work with the Adam optimizer, but we freeze parameters of
two modality encoders, it allows to speed-up the training
without performance loss.

For the segmentation task, we additionally perform the
data augmentation, by flipping and randomly rotating in-
put images on an angle between [-10, 10] degrees. RGB-D
images to be augmented are selected randomly, but the aug-
mentation is identical for both views.

4. EVALUATION

We evaluated the proposed network on two publicly
available RGB-D datasets: NYU depth dataset, 2nd ver-
sion [27] and SUN [28]]. NYU2 is a popular dataset, with
27 indoor categories. As not all categories are well rep-
resented, the publicly available split [27] reorganized the
dataset into 13 most common categories and other category
for all remaining images. The training/test split is 795/654
images. Images are resized to 512 x 512 at training time,
full size images are used at test time.

SUN dataset contains 10,335 RGB-D images with 40
categories [28]]. Following the publicly available split with
37 most common and other categories [12], it consists of
5,285 images for training and 5,050 images for testing. Im-
ages are resized to 360 x 360 at training time; full size im-
ages are used at test time. All depth images are encoded
using the HHA representation.

4.1. Qualitative analysis

We start with the qualitative analysis and test the pro-
posed architecture with exemplar RGB-D images. Fig-
ure [3]a shows how a NYU?2 example gets processed by the
network. In addition to the input images and ground truth
segmentation, it shows feature maps extracted at different
layers of the network. The upper row refers to the RGB
branch, the lower row refers to the depth branch. Column
2 visualizes feature maps generated by two modality de-
coders. Column 3 shows the common representations ob-
tained from each modality map. A close resemblance of
the two maps supports the idea that a common represen-
tation which can be obtained from either view. Then, the
reconstructed feature maps for both modalities are shown
in column 4 and final predictions in column 5.

Figure 3]b shows the cross-view reconstruction, where
the RGB image is only available at test time. It starts with
feature maps extracted from RGB network and the common
representation. Then it shows how the common representa-
tion is used for two reconstruction and prediction maps.

4.2. Quantitative results

Modularity. The proposed architecture is designed in
a modular way. It does not use any particular techniques
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Figure 3. a) Processing RGB-D images at different layers of the architecture; b) Reconstruction from one view. Better seen in colors.

invented to improve the semantic segmentation in special
cases and image regions, such as multi-scale input, CRF,
overlapping windows and cross-view ambiguities [16} 22].
This choice is motivated by two main reasons. First, we
wanted to test the effectiveness of the CRL in isolation, by
excluding any impact of the additional improvements and
by comparing to the state of art baseline. We paid most
attention to the multi-view autoencoder and its capacity to
generate common representation and reconstruct RGB and
depth views. Second, the architecture design is general
enough to cope with two different settings (SS and SS-D)
and different modalities. We prefer an ability to work multi-
modal and multi-task to an architecture narrowed to pro-
cessing one particular task. Moreover, since the common
representation is complementary to many of the state of art
improvements, the proposed architecture can integrate most
of them to further boost the performance.

Evaluation metrics. To evaluate our network on the seg-
mentation task, we prefer the intersection-over-union (IoU)
score to the pixel accuracy. The pixel accuracy is known
for being sensitive to the class disbalance, when many im-
ages include the large objects such as bed, wall, floor, etc..
Therefore, the accuracy value may be misleading when the
network performs better on the large objects and worse on
the small ones. Instead, IoU score remains informative on
both balanced and unbalanced datasets.

Let C;; denote the number of pixels those are predicted
as class j but actually belongs to class ¢, where i,7 € L.
Then C;; denotes the number of pixels with correct predic-
tion of class 7. Let T; denote the total number of pixels that
belongs to class ¢ in the ground truth, K is the total num-
ber of classes in the dataset. Then IoU is the average value
of the intersection between the ground truth and the predic-
tions: JoU = % >, NZ}%

For depth estimation, we use the root mean square er-
ror (RMSE) that measures the error between the estimated
depth and ground truth.

Hyper-parameters. We set W' = H = 65 for the
NYU2 set and W' = H' = 46 for the SUN set. Feature
maps generated by the modality branches are shaped with
d = 256. The number of hidden variables in the common

representation is fixed, & = 128. During the training with
the objective function £ in (), weight A of reconstruction
loss is 1.

4.3. Semantic segmentation and depth estimation

We consider three different ways to use the architecture
presented in Section[3|to process the RGB-D data.

e Independent learning: In this case, each modality
branch is trained and tested independently. In the SS
setting, we cope with RGB-SS and D-SS branches; in
the SS-D setting, we train and test RGB-SS and D-D
branches to provide the baseline performances.

* Joint learning: The network is trained in two stages
as described in Section El In SS and SS-D settings,
the network is trained to minimize the objective func-
tion £, with the corresponding depth branch loss L4
(see Section 3.4). In either case, we compare them to
the baselines obtained with the independent training.
In the SS setting, we test the common representation
with one or two modalities available at test time, where
the semantic segmentation is evaluated using the RGB,
depth or both images. In the SS-D setting, we test the
semantic segmentation and depth estimation with one
or two modalities available at test time.

Table 1 reports IoU values for the SS and SS-D settings
on NYU?2 dataset. In the SS setting, training two modality
branches independently yields 53.1 (RGB) and 37.1 (depth)
IoU values; this reflects the RGB input being more informa-
tive than depth. Learning a joint model and using the com-
mon representation at test time improves the performance in
cases when depth or both views are available. As both views
address the segmentation task, the common representation
makes performance dependent on which modality is avail-
able at test time. Instead it does not depend which modality
is being reconstructed.

In the SS-D setting, the baseline for RGB-SS branch is
the same, the baseline for depth reconstruction using D-D
branch gives RMSE value of 0.51. The common represen-
tation improves the RGB value to 54.3, and reduces the re-
construction error to 0.39 and 0.53 when using the depth



only or both views, respectively. In the cross-view recon-
struction, using depth for segmentation drops IoU value to
35.0 only, using RGB for depth estimation yields 0.72 error.

Branch Independent Common representation
RGB [ Depth [ RGB | Depth | RGB+D
NYU?2 dataset, SS setting
RGB-SS || 53.1 - 54.1 41.2 57.6
D-SS - 37.1 54.2 41.1 57.7
NYU?2 dataset, SS-D setting
RGB-SS || 53.1 - 54.3 35.0 55.2
D-D - 0.51 0.72 0.39 0.53
SUN dataset, SS setting
RGB-SS || 39.7 - 394 31.1 424
D-SS - 31.1 394 31.1 42.3
SUN dataset, SS-D setting
RGB-SS || 39.7 - 39.3 20.3 39.9
D-D - 0.36 0.62 0.31 0.31

Table 1. Independent and joint learning with one or two views at
test time. The best results are shown in bold.

Methods Sem. Segmentation Depth

RGB \ D \ RGB+D RGB

NYU2 dataset
Our method 54.1 | 41.2 57.6 0.72
Li et al. [20] - - - 0.82
Roy et al. [23] - - - 0.74
Laina et al. [[19]] - - - 0.57
Eigen et al. [6]] - - 52.6 0.64
FuseNet-SF3 [13]] - - 56.0 -
MVCNet [23] - - 59.0 -
SUN dataset

Our method 39.49 | 31.1 42.4 0.62
Segnet [[1]] 22.1 - - -
Bayes-Segnet [17]] 30.7 - - -
Hazirbas [13]] 324 | 28.8 33.6 -
FuseNet-SF5 [[13]] - - 37.3 -
DFCN-DCREF [16] - - 39.3 -
Context-CRF [26] 42.3 - - -
RefineNet [22] 45.9 - - -
CFEN [21] - - 48.1 -

Table 2. Comparison to the state of art on different tasks.

Table 1 also reports evaluation results on SUN dataset.
Using both modalities does improve the performance,
moreover depth estimation benefits more from the common
representation than the segmentation task.

We compare our results to the state of art on four typical
scenarios for RGB-D images (Table 2). Our architecture
is the only one able to cope with all the cases. Moreover
it remains competitive to the highly specialized architec-
tures [16} 20] which cope with one or two scenarios only.

4.4. Discussion

Both quantitative and qualitative results validated the
effectiveness of learning the common representation from
RGB and depth images. However the conducted experi-
ments left some questions open; we discuss them in this
section.

In addition to the results reported in Tables 1 and 2, we
tested a number of alternatives and made some conclusions.
First, adding the view correlation term to the reconstruc-
tion loss (see Section [3.3) does not seem to improve the
common representation nor the performance. Second, the
scale-irrelevant loss for the depth estimation, mentioned in
Section[3.2} does not seem to perform better than the Lo and
Huber losses; all SS-D results in Tables 1 and 2 refer to the
Huber loss.

The two-stage training of the network enables to play
with a so-called frozen configuration. The modality
branches trained at the first stage get frozen and extract
feature maps for all RGB-D images in the dataset. Such
a frozen configuration allowed to test different configura-
tions of common representation network before training the
full network at the second stage. Below we finally mention
some ideas on further improving the current architecture.

1. The common representation is currently limited to one
hidden layer. Using deeper multi-view autoencoders
has been beneficial in the frozen case.

2. Learning the common representation is implemented
on one fixed scale (k = 128) of the RGB and depth
feature maps. We consider replacing one-fixed-scale
MAE with multi-scale ones, on each level of the
encoder-decoder networks.

3. ResNetl01 model pre-trained on COCO dataset fits
well the segmentation task, but to the less extend the
depth estimation task. We consider setting up a more
appropriate pre-trained model or an option of training
it from scratch or combine the two models [[16].

5. CONCLUSION

We proposed a new deep learning architecture for the
tasks of semantic segmentation and depth prediction from
RGB-D images. In the proposed architecture, the conven-
tional feature fusion is replaced with a common deep rep-
resentation of the RGB and depth views. Combined with
an encoder-decoder type of the network, the architecture
allows for a joint learning for the semantic segmentation
and depth estimation based on their common representa-
tion. This approach offers several important advantages,
such as using one modality at test time to build a com-
mon representation and to reconstruct the missing modality.
We reported a number of evaluation results on two standard



RGB-D datasets. Both quantitative and qualitative results
validated the effectiveness of learning the common repre-
sentation from RGB and depth images.
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